首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
The region of Ribeir?o Preto City, located in Southeast of Brazil, S?o Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 microg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 microg/L, which is above the allowable 0.1 microg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, "Chemical Movement in Layered Soil," as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

2.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT50 values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

3.
Mixture of metals and herbicides in rivers may pose relevant risks for the health of surrounding communities. Humans may be exposed to river pollution through intake of contaminated water and fish, as well as irrigated agricultural products. The aim of this study was to assess the human health risks of environmental exposure to metals and herbicides through water and fish intake in the Pardo River. Metals (Al, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V, and Zn) were analyzed in river water and in edible fish. Herbicides (ametryn, atrazine, diuron, hexazinone, simazine, and tebuthiuron) were analyzed in river water. Seasonal variances were also studied. Aluminum, Cd, Cu, Mn, Pb, and Zn levels in river water were higher than the USEPA benchmarks. Non-carcinogenic risks due to pollutants mixture exposure were above the limit, and carcinogenic risks of As exposure were >10?6 in the sampling points during the rainy season. Metal levels in fish were lower than the Brazilian legislation and do not pose a threat to public health. Herbicides were detected in four sampling points, with atrazine concentrations (range 0.16–0.32 μg/L) below the Brazilian standard (2.0 μg/L), but above the European Union standard (0.1 μg/L). Considering the water supply needs of cities located in the Pardo River Basin and the persistence of metals and herbicides, the present study indicated that there was a seasonal influence on non-carcinogenic and carcinogenic risks to human health, especially in the rainy season. Studies for water treatment plants implantation should consider the risks of exposure to persistent substances, in order to protect the population.  相似文献   

4.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT(50) values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

5.
Paterlini WC  Nogueira RF 《Chemosphere》2005,58(8):1107-1116
The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20 min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated.  相似文献   

6.
Residues of five pesticides in surface water were surveyed during 2001 and 2003 in the Traiguen river basin in Southern Chile. Simazine, hexazinone, 2,4-D, picloram herbicides and carbendazim fungicide were selected through a pesticide risk classification index. Six sampling stations along the river were set up based on agricultural and forestry land use. The water sampling was carried out before and after the pesticide application periods and in correspondence to some rain events. Pesticides were analyzed by HPLC with DAD detection in a multiresidue analysis. During 2001, in the first sampling campaign (March), the highest concentrations of pesticides were 3.0 microg l(-1) for simazine and hexazinone and 1.8 microg l(-1) for carbendazim. In the second sampling (September), the highest concentration were 9.7 microg l(-1) for 2,4-D, 0.3 microg l(-1) for picloram and 0.4 microg l(-1) for carbendazim. In the last sampling period (December), samples indicated contamination with carbendazim fungicide at levels of up to 1.2 microg l(-1). In sampling carried out on May 2003, no pesticides were detected. In October 2003, the highest concentrations of pesticides were 4.5 microg l(-1) for carbendazim and 2.9 microg l(-1) for 2,4-D. Data are discussed in function of land use and application periods of the products, showing a clear seasonal pattern pollution in the Traiguen river. Risk assessment for these pesticides was calculated by using a risk quotient (RQ = PNEC/PEC). For picloram the calculated RQ < was 0, which indicates that no adverse effects may occur due to the exposure to this herbicide in the Traiguen river basin. For 2,4-D, simazine, hexazinone, carbendazim RQ > 1, meaning that adverse effects could occur and it is necessary to reduce pesticide exposure in surface waters. It is recommended to continue with a pesticide monitoring program and the implementation of ecotoxicological testing with local and standardized species in order to consider the probability of effects occurrence, with less uncertainty. Thus, it will be more feasible to make some recommendations to regulatory agencies regarding the pesticide use.  相似文献   

7.
Tran AT  Hyne RV  Doble P 《Chemosphere》2007,67(5):944-953
The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.  相似文献   

8.
Pesticide contamination in groundwater is an increasing problem that poses a significant long-term threat to water quality. Following the detection of elevated concentrations of diuron in boreholes in a semi-confined chalk aquifer from southeast England, a sampling programme was undertaken. Between 2003 and 2004 diuron was observed in 90% of groundwaters analysed. In 60% of groundwater samples metabolites of diuron were more prevalent than the parent compound. Longer-term (1989-2005) monitoring shows that pollution of the aquifer by atrazine, simazine, and more recently diuron, shows a positive correlation with periods of high groundwater levels. Results from groundwater residence time indicators suggest that the highest diuron concentrations are associated with waters containing the greatest proportion of recent recharge. There is some evidence to indicate that diuron occurrence can be spatially related to areas of urban and industrial development and is probably correlated with amenity usage.  相似文献   

9.
The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20–30 % for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L?1 for diuron and atrazine and 50 mg L?1 for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25–36 % degradation of the nitrochlorinated herbicides and 53–77 % of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.  相似文献   

10.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

11.
A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 micro g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

12.

A large-scale study was implemented to monitor triazine and phenylurea herbicides in the main surface water bodies of continental Greece from October 1998 to September 1999. Samples from 10 rivers and 7 lakes were analyzed for the presence of five triazine (atrazine, cyanazine, prometryne, simazine, terbuthylazine) and five phenylurea (chlorotoluron, diuron, linuron, metobromuron, monolinuron) herbicides. The samples were extracted with C18 cartridges and analyzed by high-performance liquid chromatography–diode array detection (HPLC-DAD). The most frequently detected herbicides were atrazine, followed by prometryne, cyanazine, and simazine. The concentrations of the compounds were generally low (< 0.78 μ g/L) and are not considered harmful for the freshwater ecosystem. Most of the positive samples were taken from the water bodies of northern Greece where agricultural activity is more intense.  相似文献   

13.
Brazil is the largest sugarcane producer in the world in which hexazinone (3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) are heavily used. Sugarcane harvesting is changing from the manual system with previous straw burning to the mechanized system without straw burning. The lack of burning results in soil organic carbon accumulation mainly in clayey soils, which should affect herbicides availability and fate. Therefore, we evaluated sorption of these herbicides in soil samples with and without straw burning. Both herbicides presented low apparent sorption coefficients (mean Kd,app= 0.6 and 2.4 L kg?1 for hexazinone and tebuthiuron, respectively), suggesting that they may leach to groundwater. Moreover, their sorption correlated primarily with soil organic carbon (SOC), but iron oxide contents extracted with ammonium oxalate (Fe2O3AOX) also affected it (Kd,app = ?0.228 + 0.0397 SOC + 0.117 Fe2O3AOX for hexazinone and Kd,app = ?1.407 + 0.201 SOC + 0.348 Fe2O3AOX for tebuthiuron). Soil organic carbon accumulation due to straw maintenance in the field positively affected sorption of both herbicides, but its effects were not enough to classify them as “non-leachers.”  相似文献   

14.
This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations > or = 0.27 micro g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 micro g/L; chlorothalonil 96 h EC50 = 64 micro g/L; atrazine 96 h EC50 = 69 micro g/L; 2,4-D 96 h EC50 = 45,000 micro g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

15.
This study evaluated the mobility and persistence of atrazine and ametryn in red–yellow latosols using polyvinyl chloride columns with a diameter of 100 mm and a height of 15 cm. The assays simulated 60-mm rainfall events at 10-day intervals for 70 days. The persistence and leaching were evaluated for these two herbicides. The analytes obtained from the samples were quantified by gas chromatography using flame ionization detection. Compared with ametryn, atrazine showed a greater potential to reach depths below 15 cm over 30 days of simulated rain. Ametryn, however, showed greater persistence in soil at 70 days after application. The persistence of atrazine and ametryn in soil under sunlight was 10 and 144 days respectively. Atrazine was more susceptible to sunlight than ametryn because sunlight favored atrazine degradation in hydroxyatrazine. The results indicate that in red–yellow latosol, atrazine has a high leaching potential in short term, but that ametryn is more persistent and has a high leaching potential in long term.  相似文献   

16.
Hexazinone and simazine field dissipation was studied in two different soils from Spain (Toledo and Burgos), devoted to forest nurseries for Pinus nigra. Laboratory experiments (adsorption-desorption isotherms, leaching experiment and degradation study) were carried out to determine possible mechanisms of dissipation. Higher adsorption was observed for hexazinone in Toledo (KfT = 0.69) compare to in Burgos soil (KfB = 0.20) probably due to the higher organic matter (OM) content of Toledo soil. No differences in adsorption were obtained for simazine in both soils (KfT = 1.27; KfB = 1.34). In every case, adsorption was higher for simazine than for hexazinone, in both soils. The total recovery of hexazinone in the leachates from handpacked soil columns was higher in Burgos (100%) than in Toledo (80%), because of the larger adsorption of hexazinone in this last soil. No differences in simazine leaching between both soils were found, although the total amount of pesticide recovered in leachates (40% in the two soils) was lower for simazine than for hexazinone. Finally, lower degradation was found in Burgos (t1/2 = 91 d) vs Toledo (t1/2 = 47 d), directly related with the high OM content of Toledo. No half-life was calculated for simazine in Toledo because no changes in herbicide soil content were observed during the period of time studied. In the case of Burgos, the half-life for simazine was 50 days. The field residues study showed larger persistence of simazine than hexazinone mainly due to the higher adsorption and lower mobility of simazine in the two soils. The lower persistence of hexazinone in Toledo soil than in Burgos soil is related to the larger rainfall occurred in this soil besides the higher degradation of this herbicide observed in Toledo soil. The much lower temperature in Burgos than in Toledo soil during winter contribute to the higher persistence of the two herbicides in Burgos soil.  相似文献   

17.
The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L(-1)). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R2 >or= 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06-0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

18.
Pesticides in the surface waters of the Camanducaia River watershed,Brazil   总被引:1,自引:0,他引:1  
Abstract

Camanducaia River is part of the Piracicaba watershed responsible for pumping water into the Cantareira System, which is one of the main water sources for the metropolis of São Paulo and Campinas, Brazil. Intensive use of pesticides and hilly topography represents a situation of high risk for river water contamination. Therefore, water samples from 12 locations were collected along the Camanducaia River and its tributaries, over a period of 4?mo during the rainy season, and analyzed by GC-MS/MS or UPLC- MS/MS for the presence of 46 pesticides. Seven pesticides (fipronil, methyl parathion, metolachlor, atrazine, carbofuran, diuron, and simazine) were positively detected. Only atrazine (the most frequently detected) and diuron were present at concentrations above the limit of quantification of the analytical method (0.32 and 0.57?μg L?1 for atrazine and diuron, respectively). Pesticides detection frequency was higher than expected for a river system where only 11.8% of the land area is under agriculture. The vulnerability of the Camanducaia basin to pesticide contamination is attributed to the high annual precipitation (> 1.5?m y?1 in the headwaters), associated with topographical features (steep terrain) and soil types that favor surface runoff, which has been exacerbated by poor soil management practices.  相似文献   

19.

This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations ≥ 0.27 μ g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 μ g/L; chlorothalonil 96 h EC50 = 64 μ g/L; atrazine 96 h EC50 = 69 μ g/L; 2,4-D 96 h EC50 = 45,000 μ g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

20.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号