首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 812 毫秒
1.
全球变化背景下,青藏高原作为我国乃至全球气候变化的“天然实验室”,植被生态系统发生了深刻变化。引入重心模型等方法分析和探讨2000—2015年青藏高原植被NPP时空变化格局及其驱动机理,并定量区分NPP变化过程中气候变化和人类活动的相对作用。研究发现:(1)2000—2015年,青藏高原植被NPP年均值总体上呈现从东南向西北递减的趋势。在年际变化方面,近16年植被NPP呈现波动上升趋势,其中在2005年出现上升陡坡,并在2005—2015年表现为高位波动的态势。(2)青藏高原植被NPP增加区(变化率>10%)主要集中于三江源地区、横断山区北部、雅鲁藏布江中下游以及那曲地区的中东部,而植被NPP减小区(变化率<-10%)则主要分布于雅鲁藏布江上游和阿里高原。(3)近16年青藏高原植被NPP重心总体向西南方向移动,表明西南部植被NPP在增量和增速上大于东北部。(4)青藏高原植被NPP与气候因子相关性的地区差异显著,其中植被NPP与降水显著相关的区域主要位于青藏高原中部、青藏高原东南部及雅鲁藏布江流域中下游,而植被NPP与气温显著相关的区域主要位于藏南地区、横断山区北部、青藏高原中部和北部。(5)气候变化和人类活动在青藏高原植被NPP变化过程中的相对作用存在显著的时空差异性,在空间上呈现“四线—五区”的格局。研究成果能够为揭示青藏高原区域生态系统对全球变化的响应机制提供理论和方法支撑。  相似文献   

2.
西藏草地生长季产草量动态变化及可持续发展策略   总被引:3,自引:0,他引:3  
论文利用西藏地区草地产草量实际调查数据和NDVI数据集,建立西藏草地产草量估算模型,定量分析了1987—2010年间西藏草地生长季的产草量时空变化特征。研究表明:1987—2010年间,那曲地区草地产草量增速最大,增幅为54%,而拉萨地区草地产草量呈现负增长,减幅为4%。在空间分布上,总体呈现由西北向东南递增趋势;产草量增加的地区主要位于西藏中北部,南部多为产草量减少的区域。西藏草地产草量增加的区域面积占草地总面积的76.04%;产草量减少的区域面积仅占全区草地面积的23.96%。在年代际变化上,1996—2006年10 a间西藏产草量增加的区域面积显著大于减少的区域面积。为了改善西藏草地生态系统状况,进一步提高草地产草量,论文从草地开发利用、空间格局、病虫害防治和退耕还草生态补偿等方面提出西藏草地资源可持续发展策略。  相似文献   

3.
1982-2006年中国东部秋季植被覆盖变化过程的区域差异   总被引:2,自引:1,他引:1  
为进一步认识1982-2006年中国东部秋季植被覆盖变化过程及其区域差异,论文分析了1982-2006年9-10月归一化差值植被指数(NDVI)的多年平均状况和年际变化,并通过聚类分析辨识了NDVI变化过程的主要模态,进而探讨了它们与温度和降水变化的相关关系。结果表明:(1)中国东部秋季森林的覆盖度最高,农田次之,草原最低,并表现出1998年之前趋于增加、此后趋于锐减的变化特征;(2)不同区域植被覆盖变化过程不尽相同,整个研究区植被覆盖变化过程可以分为6种模态,其中①东北地区呈波动上升趋势,②内蒙古高原东北部1982-1998年波动上升、1998年后陡然降低,③华北北部-东北南部呈现跃迁式上升,跃迁年份为1994年,④华北南部表现为先降低后略微增加,趋势转折出现在2000年,⑤江淮地区呈现为1982-1992年波动增加、1992-2006年波动降低,⑥长江及其以南地区表现为陡然下降,突变始于2000年;(3)除了内蒙古高原东北部降水变化能够解释植被覆盖度年际变率的66%以外,华北北部-东北南部的植被覆盖与降水具有正相关关系,秦岭-大巴山-长江中下游及以南地区的植被覆盖与同期温度呈显著正相关,但是降水或温度仅能够解释植被覆盖年际变率的21%,其余地区植被覆盖与气候变化没有显著的相关关系。  相似文献   

4.
2001-2010年青海湖流域植被覆盖时空变化特征   总被引:1,自引:0,他引:1  
基于2001—2010年MODIS-EVI时间序列数据反演了青海湖流域植被覆盖的空间格局和变化规律,并结合气象观测数据,在年际、月际等不同时间尺度上分析了植被变化及其对气候变化的响应以及驱动机制。结果表明:(1)2001—2010年青海湖流域总体植被变化趋于变好,EVI值10年共增长10.38%,其中春季和夏季植被增长率最大,10年增长率分别达到15.2%和18.63%;(2)植被对气候因子的响应具有明显的空间异质性。流域内植被覆盖增加的区域占全流域面积的70.68%,其中显著增加的区域占8.2%,主要分布在布哈河中游以及青海湖北部草场地区,植被覆盖下降的区域占总面积的29.32%,主要分布在西北高海拔地区以及青海湖湖滨沙地;(3)植被变化对气候因子的响应具有复杂性,在不同时间尺度上EVI和气候因子相关性不同。在年际尺度上,EVI和气温的相关系数是0.29,和降水无明显相关性;但比较10年中的生长季,即植被生长5—9月的EVI和气温、降水相关性为0.33和0.27,这里降水相关性显著增高,总体上说,气温是年际植被变化的主导因素。在月际尺度上,EVI和气温、降水强烈相关,相关系数分别为0.76、0.86(P0.01)。青海湖地区地处高海拔地区,且雨热同季,某种程度上揭示了高原植被的生长策略和对气候的响应机制。  相似文献   

5.
归一化植被指数(Normalized difference vegetation index,NDVI)是衡量区域植被生产力变化的一个重要指标,而土地利用/覆盖变化(Land use/cover change,LUCC)进程深刻影响了陆地生态系统空间分布格局及其生产力变化。因此本文结合趋势分析和转移矩阵法,从中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)NDVI年际变化角度分析鄂尔多斯北部典型农牧交错区(十大孔兑地区)2000-2015年植被生产力的变化趋势与LUCC的关系。结果表明:(1)在农牧交错区植被生产力总体呈增加趋势,其中显著增加和不显著增加区域面积占总面积的89.41%,分别为22.01%和67.4%;其后依次为不显著减少区域、无变化区域和显著减少区域,面积比例分别为4.59%、3.32%和2.68%。(2)在不显著增加和显著增加区,土地转换面积分别为235146.08 hm2和82761.76 hm2,草地转为农田、林地、水体、建设用地和未利用地尤其是草地转为农田导致对应区域植被生产力增加。  相似文献   

6.
基于遥感的青海省植被覆盖时空变化定量分析   总被引:8,自引:2,他引:6  
王莉雯  卫亚星  牛铮 《环境科学》2008,29(6):1754-1760
使用1km分辨率MODIS NDVI时间序列数据,采用决策树分类、监督分类和非监督分类相结合的综合分类方法,将青海省土地覆盖类型划分为14个类别.这种分类方法重点突出了植被,特别是稀疏植被(包括稀疏草地和稀疏灌丛)的空间分布.在将青海省分为5个高程带的基础上,使用GIS软件的空间分析功能,对青海省2001~2006年的地表植被覆盖在各级高程带上的空间分布和时间序列变化进行了定量分析.结果表明,近5a青海省的植被覆盖有所改善,植被覆盖面积从2001年的370047km2增加到2006年的374576km2,植被覆盖率增加了0.63%.青海省5级高程带中高山地带的植被覆盖率最高,达到67.92%.在青海省各级高程带上,高山地带上中覆盖度草地的分布面积最大,为94003km2.高山地带高覆盖度草地的面积增加最多,为1280km2.5a间植被覆盖变化最大的是高山地带上稀疏草地向中覆盖度草地的转变,转变面积达到15931km2.  相似文献   

7.
利用1982~2006年的NOAA AVHRR-GIMMS和MODIS 2种数据集的归一化植被指数(NDVI)数据对东北多年冻土区植被NDVI年际动态和空间差异进行分析,并结合气象数据和土地利用/覆被数据分析了植被NDVI对气候变化和土地利用/覆被变化的响应.研究表明,东北多年冻土区植被NDVI值较高,且空间差异明显;森林为该区主要植被类型,NDVI值较高,主要分布于大小兴安岭和伊春地区;草地集中分布于西南部, NDVI值相对较低.东北多年冻土区过去25a间植被生长的变化趋势为:伴随着气温的显著升高和降水量减少,植被NDVI显著下降.较气温而言,降水量是影响植被NDVI的主要因子(r = 0.77, P < 0.01).在气候变化和人类活动的双重作用下,东北多年冻土区植被NDVI在1982~2006年间表现为4个阶段:1982~1990年,植被NDVI虽有小幅波动,但整体上呈持续增加的趋势;1990~1993年,植被NDVI呈迅速下降趋势; 1993~1997年,植被NDVI呈现回升态势,表现出缓慢上升的趋势;1998~2006年,植被NDVI呈现总体下降趋势.不同植被类型表现出不同的NDVI年际变化规律,尤以草地NDVI值波动最大.植被NDVI变化空间异质性显著.气候变化和多年冻土退化影响了东北多年冻土区植被NDVI动态.年均气温升高和年降水量降低影响了植被的生长.从像元尺度来看,研究区植被NDVI与气温和降水均具有较显著的相关性.研究区土地利用/覆被变化的分析结果表明,不同的土地利用类型间的转变对植被NDVI的大小和空间分布产生了重要影响.  相似文献   

8.
长江流域植被净初级生产力对未来气候变化的响应   总被引:3,自引:0,他引:3  
苗茜  黄玫  李仁强 《自然资源学报》2010,25(8):1296-1305
研究基于气象观测和B2气候变化情景数据,利用大气-植被相互作用模型(AVIM2)模拟了1981—2000年和2010—2050年两个时段内植被NPP的空间分布格局及其时间变化趋势并分析了其时空变化与气温和降水量的关系。研究表明1981—2000年流域内植被NPP的空间分布大致呈现自西向东、自北向南递增的趋势。未来长江流域气温将整体增加,但各地增温幅度不同。流域降水量有增有减,主要增加区域位于长江源头和上游及中游的江北地区。未来在气温增加幅度较小而降水量增加的区域,如长江源头和上游的青海、西藏、川西及云南的部分地区的植被NPP将增加。在气温增幅较大而降水量减少或者降水量增加不多的区域如长江中游和下游的广大地区植被NPP将减少。从植被类型来看,长江流域大部分森林、郁闭灌丛和农作物的NPP在B2气候变化情景下将减少,每年减少量分别在0~4.5 gC.m-2、0~2 gC.m-2和0~2.5 gC.m-2之间。高寒草甸、草地和稀疏灌丛的NPP将增加,每年增长量介于0~2 gC.m-2之间。  相似文献   

9.
1982~1999年青藏高原植被净第一性生产力及其时空变化   总被引:56,自引:3,他引:56  
基于地理信息系统技术和生态学过程模型,利用1982~1999年间NOAA-AVHRR数据(归一化植被指数,NDVI)及其相匹配的温度、降水和太阳辐射等气象数据,结合植被和土壤质地等资料,研究了青藏高原植被的净第一性生产力(NPP)及其动态变化。结果表明:青藏高原植被的总NPP为0.21PgC·a-1(1Pg=1015g),约占全国植被NPP总量的12.43%。NPP的总体分布趋势是,自东南至西北递减,这与水热条件的分布趋势一致。18年来,青藏高原植被的NPP在波动中呈上升趋势,从1982年的0.19PgC增加到1999年的0.24PgC,年平均增加速率约为1%;其中,青海省的东南部、西宁地区和西南部的部分地区,以及西藏东部的横断山区和雅鲁藏布江南部的部分地区的NPP增加显著。除10月和12月的月平均生产力呈减少趋势外,大部分植被类型的其它月份大都呈增加趋势。  相似文献   

10.
近20年气候变化对西南地区植被净初级生产力的影响   总被引:19,自引:1,他引:18  
论文利用大气-植被相互作用模型(AVIm2)模拟了西南地区植被净初级生产力的空间分布格局和多年变化,分析了1981-2000年西南地区气候变化对森林、灌丛和草地净初级生产力的影响。研究表明,西南地区植被净初级生产力的空间分布与降水量呈显著正相关,与海拔高度呈负相关。从年际变化来看,西南地区总植被净初级生产力近20年略有上升。近一步分析表明,由于近20年西南地区自然植被分布区域降水量变化具有明显差异,从而使得不同类型植被对气候变化有不同响应特征。在森林分布广泛的地区,气温升高速率为0.037℃/年,降水量变化趋势不明显,模拟的森林植被净初级生产力没有明显变化趋势。灌丛和草地集中区域气温升高速率分别为0.040℃/年和0.034℃/年,年降水量有明显增加趋势,植被净初级生产力有上升趋势。  相似文献   

11.
1982—2015年长江流域植被覆盖度时空变化分析   总被引:7,自引:1,他引:6  
张亮  丁明军  张华敏  文超 《自然资源学报》2018,33(12):2084-2097
量化植被覆盖变化及其与气候变化之间的关系,是当前全球变化和陆地表层生态系统研究领域的热点和难点。论文基于GIMMS-NDVI数据和气象数据,运用趋势分析、突变分析、偏相关分析以及残差分析,探讨长江流域植被覆盖度时空变化特征及其对气候和人类活动干扰的响应机制。结果表明:1)1982—2015年间长江流域除岷-沱江和太湖流域植被覆盖度为下降趋势外,其余均呈上升趋势,呈上升趋势的区域占流域总面积的69.77%,其中45.09%的区域呈显著上升趋势(P<0.1);2)基于Mann-Kendall突变分析发现,1982—2015年间长江流域植被覆盖度年际变化存在突变现象,且区域差异性显著;3)气温与植被覆盖度的偏相关系数绝对值最大的像元占研究区总面积的43.31%,表明气温是长江流域近30 a植被覆盖度年际变化的主要影响因素;4)人类活动对长江流域植被覆盖度的影响力以持续增强为主,人类活动减弱的区域主要分布在金沙江流域、岷-沱江流域、汉水流域局部区域以及各大省会城市区域。  相似文献   

12.
利用四川156个气象观测站1981-2014年霾日观测资料,对区域内不同强度霾日的时空分布特征及变化趋势进行分析.结果发现:不同强度霾日数呈现轻霾和重霾显著上升、中霾下降的趋势,20世纪90年代后霾日整体偏多,其中,秋、冬季发生频率偏高,12月和1月是多发时段;不同强度年均霾日高值区集中在盆地中部、东部地区,低值区主要位于盆地西南地区,并呈现盆地中北部霾日逐年减少,盆地南部逐年增多的变化趋势.结合季节特征探讨霾日形成机理发现,春、夏季欧亚中高纬度呈现两槽一脊的环流形势,印缅槽较强,利于降水,盆地相对湿度为85%以上,高原东侧上升气流较明显,大气对流层中下层为"上冷下暖"的递减层结,利于大气污染排放物垂直交换及其对外扩散;秋、冬季高纬度以纬向环流为主,经向环流偏弱,冷空气被阻挡在盆地以北以西区域,盆地东部为下沉气流,850 hPa以下的偏东气流使东部污染物向西蔓延,青藏高原以东地区上空为显著的"上暖下冷"逆温层结,相对湿度为80%左右,地面气温增加,相对湿度下降,使霾不易向雾转换,加重霾日高频状况的发生.  相似文献   

13.
为探究全国大气气溶胶光学厚度(AOD)的分布及变化特征,利用最新的MODIS/Terra C6.1 550 nm AOD月数据分析了2001~2017年全国AOD的时空分布及变化趋势.结果表明,空间特征:年均AOD空间分布呈现两个显著的高值中心和低值中心,第一高值中心位于以人为气溶胶为主的华北平原、华中地区、长三角地区、珠三角地区和四川盆地,第二高值中心位于以尘埃气溶胶为主的塔克拉玛干沙漠地区,两个低值中心分别位于内蒙古地区东部至东北地区北部以及青藏高原.时间特征:各区域AOD峰值主要出现在春、夏季,塔克拉玛干沙漠地区、四川盆地和珠三角地区AOD在3~4月达到峰值,华北平原、华中地区和长三角地区AOD在5~7月达到峰值.趋势特征:2001~2006年,我国西北地区和内蒙古地区AOD呈现减少趋势,我国中东部地区和西南地区东部AOD呈现增长趋势.2007~2012年,青藏高原和塔克拉玛干沙漠地区AOD变化趋势由减少转为增长,华北平原和四川盆地AOD的增幅减弱,长三角地区AOD呈现弱的下降趋势.2013~2017年,我国大部地区AOD呈显著地下降趋势.  相似文献   

14.
利用臭氧观测仪(OMI)卫星遥感反演的大气边界层(PBL)SO2柱含量(PBL SO2)数据分析了自2005年以来中国PBL SO2柱含量数据的空间分布特征、变化趋势及其影响的原因.从长时间尺度上,PBL SO2柱含量呈现明显的下降趋势.2005年中国区域年平均PBL SO2柱含量为0.317DU,2016年为0.276DU,减少了0.041DU,大约为13.2%.SO2柱含量呈现明显的周期变化特征.冬季浓度较高,夏季较低,最小值和最大值分别出现在7和12月,分别为0.246和0.404DU.小波分析显示SO2的变化在10个月的尺度水平上存在明显的主振荡周期,在40个月的尺度水平上存在明显的次周期变化.中国区域SO2污染严重的高值区主要出现在京津冀鲁环渤海地区、关中平原(山西省和陕西省)、河南省大部分地区、四川盆地、长江三角洲地区和珠江三角洲.最大的SO2柱含量值可达1.1DU以上.京津冀鲁环渤海地区的高值区已经延伸到长江三角洲地区,有向南延伸和珠江三角洲连在一起的趋势.由于地形和天气特征的影响,四川盆地地区SO2出现次高值区.在青藏高原和西北地区,SO2浓度较低,呈现背景值特征,多年平均的SO2约在0.05DU的水平.中国区域SO2变化趋势在空间分布上存在明显的区域差异,变化的范围在-0.70~0.15DU之间.SO2出现逐渐减少的地区主要是在高值区,如京津冀鲁环勃海地区、关中平原、四川盆地,长江中下游和珠江三角洲.减幅最大的是四川盆地和珠江三角洲,大约减少了61%.四川盆地2005~2016年约减少了0.55DU;珠江三角洲约减少了0.45DU.出现增长的地区主要是西部和北部地区,以及东南沿海除珠三角外的大部分区域,最大增长大约为0.15DU.  相似文献   

15.
西藏高原生态系统服务时空格局及其变化特征   总被引:4,自引:1,他引:3  
西藏高原是我国国家生态安全格局中至关重要的区域,维护提升其生态屏障功能是该区生态保护的核心目标。论文分析了1990—2010年西藏高原生态系统类型及其服务能力的时空变化格局,开展近20 a生态屏障功能的综合评估。结果表明:1)近20 a,西藏高原生态系统宏观格局稳定少动,森林、水体与湿地面积略有增加,草地、荒漠面积减少;2)森林、草地、湿地生态系统水源涵养量为895.19×108 m3,平均单位面积水源涵养量为744.48 m3/hm2,近20 a水源涵养服务在波动中有所提升;3)水蚀区土壤水蚀模数为3 876 t/km2,土壤水蚀量为10.31×108 t,生态系统土壤保持服务保有率为66.3%,近20 a土壤侵蚀量下降,而土壤保持服务保有率呈持续上升趋势;4)土壤风蚀模数为1 581.2 t/km2,土壤风蚀量为18.99×108 t,防风固沙服务保有率为66.5%,近20 a由于风场强度减弱与植被覆盖度增加,土壤风蚀量下降,而生态系统防风固沙服务保有率持续提升;5)森林、草地、湿地碳固定服务量为1.95 Pg C,从前10 a略有下降态势转变为后10 a轻微上升趋势。  相似文献   

16.
论文利用NCEP/NCAR再分析资料及中国142 个测站12 小时降水资料,采用线性倾向估计、合成分析、相关分析等方法,对青藏高原夏季500 hPa 纬向风的昼夜变化特征及其影响进行了分析。结果表明:自1950 年以来,高原夏季500 hPa 昼、夜纬向风均呈现整体减弱趋势,且减弱趋势夜间比白天明显,纬向风日较差呈增大趋势。高原昼、夜纬向风在1967 年均存在减弱突变,纬向风日较差存在1965 年的减小突变和1975 年的增大突变,纬向风日较差具有4~6 a 及16~23 a 的显著周期。高原昼夜纬向风异常,使得高原东侧及其以东地区出现异常的上升或下沉气流,且高原纬向风减弱时,长江以北的我国大部分地区降水偏少,长江以南地区降水偏多,降水对高原纬向风异常响应的昼夜差异主要表现在四川盆地东西部降水异常的昼夜差异上。  相似文献   

17.
2000~2020年黄河流域植被时空演化驱动机制   总被引:10,自引:7,他引:3  
以归一化植被指数(NDVI)作为植被覆盖及生长状况指标,基于2000~2020年MODIS NDVI数据及同时期气象数据,采用Theil-Sen斜率估算、Mann-Kendall检验、相关性分析和残差分析等方法研究了2000~2020黄河流域植被时空演化驱动机制.结果表明,2000~2020年黄河流域生长季NDVI均值以0.005 a-1的速率波动上升,植被明显改善的区域主要分布于流域中游的秦岭山系、陕北高原和吕梁山系;黄河流域生长季NDVI与降水和气温的偏相关系数均值分别为0.57和0.49,降水对植被的影响高于气温;人类活动对植被生长起明显改善的区域主要分布在流域中部的陕北高原、吕梁山系和宁夏南部等区域,对植被生长起抑制作用的区域主要分布在银川、包头、西安、洛阳、郑州和太原等人类活动强烈的城市区域;人类活动和气候变化分别对黄河流域植被变化贡献了72%和28%,在人类活动和气候变化的驱动下,黄河流域植被生长得到改善的面积占流域面积的96.4%,其中人类活动贡献率大于80%的区域面积占34.3%,主要分布在流域中部和东南部.气候变化贡献率大于80%的区域面积占4....  相似文献   

18.
西藏生态安全屏障保护与建设工程的宏观生态效应   总被引:3,自引:1,他引:2  
西藏高原是我国重要的生态屏障、江河源区与生物物种基因库,为了保障其生态功能的持续有效发挥,2008年开始实施西藏高原生态安全屏障保护与建设工程。论文基于工程规划目标,通过对比监测2000—2008年与2008—2015年西藏高原生态系统及其关键服务的时空变化,科学地评估西藏高原生态工程的生态效应。结果表明:工程实施前、后8 a相比,1)西藏高原生态系统格局稳定少动,生态系统宏观状况趋向良性发展。森林面积持续增加,荒漠面积显著减少,水体与湿地面积从减少转变为增加。2)草地退化趋势明显减弱、草地恢复态势显著,退化草地占比下降了19.9%,恢复草地占比增加了33%。植被覆盖度增加趋势明显,平均提高了1.9%,特别是高寒草甸类。草地载畜压力明显减少,牧草供给能力提升,草畜矛盾有所缓解。3)生态系统水源涵养能力增加,碳汇总量略有提高,防风固沙服务能力稳步上升。然而,降雨量增加导致降雨侵蚀力增强,植被覆盖度增加但植被根系土壤层无法短时期内恢复,从而导致土壤保持服务能力有所下降。4)西藏高原的暖湿化气候有利于减缓荒漠化进程并促进生态系统恢复,而生态安全屏障保护与建设工程的实施对西藏高原生态系统服务能力的提升特别是工程区局部生态恢复具有一定的正面作用。  相似文献   

19.
四川省森林资源在长江上游生态屏障建设和长江经济带发展中具有举足轻重的地位,其动态变化特征及其影响因素对区域生态文明建设乃至全国生态安全格局具有重要的理论和现实意义.针对四川省近20 a森林资源动态变化,选取森林面积、人均森林面积、森林蓄积量、活立木蓄积量、人工造林面积5个森林资源指标,GDP、人均GDP、年末常住人口、城镇化率4个社会经济因素指标,以及年平均降水量、年平均相对湿度、年平均气温和森林火灾总面积等自然因素指标进行相关性分析.结果表明:四川省GDP、人均GDP、城镇化率和年平均气温都对森林资源变化起正向促进作用,具体表现为城镇化率>人均GDP>GDP>年平均相对湿度>年平均气温(P<0.05),而年平均相对湿度则对森林资源的增长起限制作用;四川省施行的政策在森林资源的变化中也起到很大引导作用.根据森林面积空间变化分析,2005—2010年四川盆地西北部和川南山地区主要以增加为主,西部横断山区森林面积增加和减少的量相当;2010—2015年森林面积发生变化的区域整体向东南方向转移,主要集中在四川盆地内部.四川省耕地和草地是林地面积增加主要的来源地类,耕地和灌木是林地面积消耗最主要的地类.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号