首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper, utilizing the existing primary copper smelter process for the recovery of metals from waste printed circuit boards (PCBs) is proposed as an alternative to the current backyard operations in developing countries. The Model for Evaluating Metal Recycling Efficiency from Complex Scraps (MEMRECS) concept is introduced as a tool for the evaluation of the eco-efficiency of metals recovery from waste PCBs. Based on the MEMRECS approach, the relative contribution of every metal fraction to the recyclability of the whole product is estimated. Thereby, gold content is identified as a key factor strongly influencing the efficiency of metals recovery from waste PCBs. Furthermore, it could be used as an indicator for the categorization of waste PCBs before feeding them into the recycling process. Finally, an integrated process is proposed to optimize the eco-efficiency of metals recovery from waste PCBs in developing countries.  相似文献   

2.
Sustainable material management (SMM) has been initiated by the Organization for Economic Cooperation and Development (OECD) in 2005. SMM is an approach to promote resource conservation, reducing negative environmental impacts and preserving the natural capital of material and the balance of economic efficiency and social equity. Life cycle assessment and material flow analysis have been widely used to estimate the environmental impacts for resource consumption, but economic development has not been taken into account. Before 1984, improper garbage disposal was not an important issue in Taiwan. But over the past three decades, the Taiwan Government has accomplished not only waste disposal but also resource recycling, which are conducive to the essence of SMM. This study is the first research project to develop a SMM conceptual model for policy and strategy in Taiwan. SMM is the suitable waste management concept for the next era. This study reviewed the policy and strategy that has been applied in Taiwan’s waste management, and compares the efficiency of waste management policy in Taiwan with the concept of SMM. A case study of the waste flow will be used to prove that the sustainable material policy can be a suitable management system to achieve sustainable development. This study will open a new chapter of research on global SMM for Taiwan.  相似文献   

3.
Waste represents the loss of both material and energy resources. Because excessive waste generation is a symptom of inefficient production processes, low durability of goods and unsustainable consumption patterns, waste quantities can be considered as an indicator of how efficiently society uses raw materials. Therefore, good waste management begins with preventing waste from being generated. The objective of this paper is to present the work related to waste minimization in Lithuania by introducing successful examples from industry, to bring ideas and inspiration to authorities, companies, and others working in the field of waste minimization. The paper is supporting EU waste policy manifested in the EU waste strategy and the proposed Sixth Environmental Action Programme. Many enterprises are still unaware of the full costs of waste management. Therefore, by applying the methodology presented in the paper, companies could make substantial reductions in their waste, and therefore, disposal costs. Waste minimization (WM) often results in substantial savings through reduced purchasing costs and more efficient practices. It also has wide environmental benefits such as reduced energy consumption and less environmental pollution, conservation of natural resources and extension of valuable landfill capacity. Therefore, waste prevention should have the highest priority in waste strategies, as this is the only way to stop the growth of the amount of waste and reduce the loss of resources (EUC Bulletin 12, 1996).  相似文献   

4.
提高资源利用效率,有效减少废弃物对环境的污染,是实现环境与效益双赢的重要方法。以重金属污染防治为例,就提高再生资源利用率以及综合性再生资源的回收处理等问题进行分析和探讨。  相似文献   

5.
The paper industry has a relatively high degree of reliance on suppliers when compared to other industries. Exploring the role of the paper industry in terms of consumption of intermediate inputs from other industries may help to understand how the production of paper does not only generate waste by itself but also affects the amount of waste generated by other industries. The product Life Cycle Assessment (LCA) is a useful analytical tool to examine and assess environmental impacts over the entire life cycle of a product “from cradle to grave” but it is costly and time intensive. In contrast, Economic Input Output Life Cycle Assessment Models (IO-LCA) that combine LCA with Input–Output analysis (IO) are more accurate and less expensive, as they employ publicly available data. This paper represents one of the first Spanish studies aimed at estimating the waste generated in the production of paper by applying IO-LCA. One of the major benefits is the derivation of the contribution of direct and indirect suppliers to the paper industry. The results obtained show that there was no direct relationship between the impact on output and the impact on waste generation exerted by the paper industry. The major contributors to waste generation were the mining industry and the forestry industry.  相似文献   

6.
This paper presents the results of life cycle inventory (LCI) analyses that were carried out to determine the environmental impacts (emissions, resource extractions and land use) of different newspaper waste management options for the Helsinki Metropolitan Area (HMA). LCI analyses were performed for five product systems, in which discarded newspapers were divided into two streams: separately collected newspapers and newspapers in mixed waste. In all the options, the manufacturing and printing processes of newspaper were kept unchanged. The waste management alternatives included combinations of material recycling, energy recovery and landfilling. These product systems were modelled using the current collection rate of newspaper and four additional collection rates. The LCIs of the product systems showed that the life cycle phase causing the most environmental impacts was the paper mill. When comparing the different waste management systems, the energy recovery options were in general superior to landfilling. The ecological implications of the increased energy recovery and decreased material recycling of newspaper were, however, not yet considered in the study. These aspects were assessed in the life cycle impact assessment (LCIA), which was performed after the LCI phase.  相似文献   

7.
The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for waste system performance assessments.  相似文献   

8.

To create a truly circular economy requires a shift from the traditional view of waste disposal to one of resource management. This is particularly important in developing countries, where municipal waste generation is increasing, and efficient recovery of economic value from waste is rarely achieved. Conducted in the University of Lagos (UoL), Nigeria, this study investigated the efficiency of a recycling scheme with the goal of making recommendations to improve the process. UoL’s recycling policy centers around source segregation of waste into color-coded bins. Waste audit was carried out using the output method and interviews were conducted with staff from the waste management team to understand practices on campus. Substantial contamination of colored bins with non-target material was observed. Organics (30%), mixed plastics (28%) and paper (24%) were the most abundant materials, hence have the greatest potential for recovery, and income generation, if segregation rates could be improved. Despite its recycling policy and infrastructure, 99% of UoL waste was going to landfill. Poor policy implementation results in low recovery rates. Targeted waste reduction and increased material recovery would enhance efficiency. Improved awareness of recycling benefits, in addition to policy enforcement, could serve as tools to increase stakeholder participation in recycling.

  相似文献   

9.
The Taiwan Environmental Protection Administration (Taiwan EPA) launched a national Extended Producer Responsibility (EPR) system after integrating eight private recycling organizations in 1998. After that, the environmental performance of the EPR system brought a lot of attention to policy makers. Many studies show positive environmental effects of the EPR system in Taiwan. However, there are controversial questions remained, such as whether the performance indicators used are the right choice to estimate the environmental effects of the recycling policy? Can those estimated results really reflect the performance of the system?This paper would therefore like to more accurately evaluate the performance indicators of the EPR system based on data observed over the past decade in Taiwan. In the process of evaluating the performance indicators, we have found that the collection rates for durable goods are often ignored in countries that pursue a zero waste policy. This may affect the actual recycling outcome and resource direction targeted by producers. However, in order for the collection rate to be adopted as a policy indicator, how to estimate the amounts of retired or waste products during a period is critical. In this paper, we estimate the collection rate for electrical and electronic waste by using the survival analysis and ownership data analysis approaches. We also provide a comparison of both approaches and put forward suggestions for directions in the future in solid waste management.  相似文献   

10.
The potential of phosphorus (P) recycling from municipal solid waste incineration (MSWI) residue is investigated. Vast and ever increasing amounts of incineration residues are produced worldwide; these are an environmental burden, but also a resource, as they are a major sink for the material flows of society. Due to strict environmental regulations, in combination with decreasing landfilling space, the disposal of the MSWI residues is problematic. At the same time, resource scarcity is recognized as a global challenge for the modern world, and even more so for future generations.This paper reports on the methods and efficiency of P extraction from MSWI fly ash by acid and base leaching and precipitation procedures. Phosphorus extracted from the MSWI residues generated each year could meet 30% of the annual demand for mineral phosphorus fertiliser in Sweden, given a recovery rate of 70% achieved in this initial test.The phosphorus content of the obtained product is slightly higher than in sewage sludge, but due to the trace metal content it is not acceptable for application to agricultural land in Sweden, whereas application in the rest of the EU would be possible. However, it would be preferable to use the product as a raw material to replace rock phosphate in fertilizer production. Further development is currently underway in relation to procedure optimization, purification of the phosphorus product, and the simultaneous recovery of other resources.  相似文献   

11.
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency.Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases.For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables.The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.  相似文献   

12.
Today, over-consumption, pollution and resource depletion threaten sustainability. Waste management policies frequently fail to reduce consumption, prevent pollution, conserve resources and foster sustainable products. However, waste policies are changing to focus on lifecycle impacts of products from the cradle to the grave by extending the responsibilities of stakeholders to post-consumer management. Product stewardship and extended producer responsibility are two policies in use, with radically different results when compared for one consumer product, refrigerators. North America has enacted product stewardship policies that fail to require producers to take physical or financial responsibility for recycling or for environmentally sound disposal, so that releases of ozone depleting substances routinely occur, which contribute to the expanding the ozone hole. Conversely, Europe's Waste Electrical and Electronic Equipment (WEEE) Directive requires extended producer responsibility, whereby producers collect and manage their own post-consumer waste products. WEEE has resulted in high recycling rates of greater than 85%, reduced emissions of ozone-depleting substances and other toxins, greener production methods, such as replacing greenhouse gas refrigerants with environmentally friendly hydrocarbons and more reuse of refrigerators in the EU in comparison with North America.  相似文献   

13.
The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs. The US EPA's National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management or materials recovery programs. The environmental methodology is based on the use of life-cycle assessment and the cost methodology is based on the use of full-cost accounting. Life-cycle inventory (LCI) environmental impacts and costs are calculated from the point of collection, handling, transport, treatment, and disposal. For any materials that are recovered for recycling, offsets are calculated to reflect potential emissions savings from use of virgin materials. The use of the MSW-DST provides a standardized format and consistent basis to compare alternatives. This paper provides an illustration of how the MSW-DST can be used by evaluating ten management strategies for a hypothetical medium-sized community to compare the life-cycle environmental and cost tradeoffs. The LCI results from the MSW-DST are then used as inputs into another US EPA tool, the Tool for the reduction and assessment of chemical and other environmental impacts, to convert the LCI results into impact indicators. The goal of this paper is to demonstrate how the MSW-DST can be used to identify and balance multiple criteria (costs and environmental impacts) when evaluating options for materials and waste management. This type of approach is needed in identifying strategies that lead to reduced waste and more sustainable resource consumption. This helps to meet the goals established in the US EPA's Resource Conservation Challenge.  相似文献   

14.
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13–39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14–36 Nm3/ton separately collected solid organic household waste. Also, 13–32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.1 Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste.  相似文献   

15.
The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a ‘chartherisation’ reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kgwood−1) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.  相似文献   

16.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities.  相似文献   

17.
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption.  相似文献   

18.
According to Japanese government policy, the input of natural resources should be minimized and input resources should be utilized to the greatest extent possible so that, eventually, minimum waste is generated. The cement industry of Japan has worked hard to maximize waste utilization. Focusing on the cumulative amounts of the elements needed for clinker and gross calorific values, this study estimated the extent to which waste utilization has directly or indirectly reduced natural resource consumption and greenhouse gas emissions associated with cement production at 32 factories in Japan and clarified the effect of waste utilization in the cement industry on the resource productivity of Japan based on information for fiscal year 2008. Had no wastes been utilized, the cement industry consumption of limestone would have been 18% higher; of clay, 2,899% higher; and of energy, 22% higher. The utilization of wastes in the mixing and burning process of cement production directly reduced greenhouse gas emissions (12% emitted gas reduction) by a larger amount than the indirect reduction achieved by their utilization during the admixing process (10% reduction). Waste utilization for cement production contributed to an increase in resource productivity of about 8,000 Japanese Yen/ton.  相似文献   

19.
This paper considers the current status of waste generation and waste treatment trends, and introduces a wide variety of policy instruments for waste minimization at every stage of economic activity in Korea, i.e., production, distribution, and consumption. At each stage, the Korean government has imposed a policy mix of direct regulations and economic incentives. These policy instruments have made definite contributions to a reduction of waste generation and an increase in the recycling rate. Despite these fruitful outcomes, there are still some shortcomings with respect to efficiency and equity. Among other aspects, this paper examines three representative economic incentives – the charge system, the volume-based-collection fee system, and the deposit–refund system – and identifies shortcomings in each. Some suggestions are made for the creation of better systems of economic incentives. However, many experts insist that this kind of piecemeal change in each policy instrument is not enough to achieve the ultimate goal of resource circulation and an environmentally friendly society, especially in Korea, which is a country with little land, a high population density, and a high economic growth rate. Among experts, special emphasis is placed on the activation of recycling industries to achieve these goals. Received: April 2, 2001 / Accepted: September 10, 2001  相似文献   

20.
Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号