首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigates the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from four electric arc furnaces (EAFs) and eight secondary aluminum smelters (secondary ALSs) in Taiwan. The mean PCDD/F International-Toxicity Equivalents (I-TEQ) concentrations in the stack gases of these EAFs and secondary ALSs are 0.28 ng I-TEQ/Nm3 (relative standard deviation [RSD]= 100%) and 3.3 ng I-TEQ/Nm3 (RSD = 260%), respectively. The high RSDs, especially for those obtained from secondary ALSs, could be caused by the intrinsic differences in their involved feeding materials, furnace operating conditions, and air pollution control devices. The mean I-TEQ emission factor of PCDD/Fs for EAFs (1.8 microg I-TEQ/tonne-feedstock) is lower than that for secondary ALSs (37 microg I-TEQ/tonne-feedstock). This result might be because the involved furnace temperatures for secondary ALSs (650-750 degrees C) are lower than those for EAFs (1600-1700 degrees C), resulting in the deterioration of the combustion condition, leading to the formation of PCDD/Fs during the industrial process. This study found that the total PCDD/F emissions from EAFs (20 g I-TEQ/yr) and secondary ALSs (18 g I-TEQ/yr) are approximately 27, 53, and approximately 24, 49 times higher than those from municipal solid waste incinerators (MSWIs; 0.74 g I-TEQ/yr) and medical waste incinerators (MWIs; 0.37 g I-TEQ/yr), respectively; while those are 44 and 40% of total PCDD/F emission from sinter plants (45 g I-TEQ/ yr), respectively. Considering a more stringent emission limit has been applied to waste incinerators (0.1 ng I-TEQ/Nm3) in Taiwan lately, the results suggest that the control of the emissions from metallurgical processes has become the most important issue for reducing the total PCDD/F emission from industrial sectors to the ambient environment.  相似文献   

2.
Yu BW  Jin GZ  Moon YH  Kim MK  Kyoung JD  Chang YS 《Chemosphere》2006,62(3):494-501
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton.  相似文献   

3.
This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 degrees C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 microg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 microg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

4.
Fabrellas B  Sanz P  Abad E  Rivera J 《Chemosphere》2001,43(4-7):683-688
The main objectives of the Spanish dioxin inventory and the incidence of municipal waste incinerators in the PCDD/Fs releases in the period from January 1997-November 1999 are presented. Preliminary data about the stack emission levels, fly ashes and slags as solid residues and the PCDD/Fs input in the USW are also presented to elaborate an initial balance for the incineration sector. A great decrease, from 20 to 1.2 g I-TEQ/y, from incineration gas emissions has been observed since 1996. The preliminary balance in the MWI sector suggests an overall PCDD/Fs destruction. The calculated emission factor, 1.06 microg I-TEQ/Mg, indicates a high quality of the air pollution control systems. The assumption of PCDD/Fs in the USW permits an initial evaluation of other waste management systems.  相似文献   

5.
Investigations have been carried out at the three Corus UK sinter plants over the period 2002-2004 to characterise the emissions of both 2,3,7,8-PCDD/Fs and WHO-12 PCBs, to estimate annual mass releases of these organic micro-pollutants using the I-TEF and WHO-TEF schemes, and to investigate the formation of PCBs in the iron ore sintering process. Results showed that the sintering of iron ore produces a characteristic WHO-12 PCB and PCDD/F congener pattern that is substantially the same for all UK sinter plants. With regard to WHO-12 PCBs, the most abundant congeners were typically PCBs 118 (6-9 ngNm(-3)), 105 (2-4 ngNm(-3)) and 77 (2-3 ngNm(-3)). All other WHO-12 PCBs were also detected at concentrations around 1 ngNm(-3). All sinter plants investigated exhibited very similar TEQ concentrations. WHO-12 PCB emissions were in the range 0.042-0.111 ngWHO-TEQNm(-3), whereas PCDD/F emissions ranged from 0.39 to 1.62 ngWHO-TEQNm(-3). PCDF congeners were the main contributors to the overall TEQ in sintering emissions (ca. 85%). Amongst WHO-12 PCBs, PCB 126 was the only noteworthy contributor to total TEQ (ca. 5-7%), a similar contribution to that from PCDDs. Based on the measurements that Corus UK has undertaken at these three sinter plants, annual mass releases of WHO-12 PCBs and PCDD/Fs have been calculated. For UK sinter plants, a total mass release of 29.5 g WHO-TEQ per annum [WHO-12 PCBs+PCDD/Fs] has been estimated, representing 9% of the total PCDD/F emissions to the UK atmosphere. Measurements were also carried out at a UK sinter plant to determine the windleg emission profile of WHO-12 PCBs. Results showed that WHO-12 PCBs were formed in the same regions of the sinter strand as 2,3,7,8-PCDD/Fs, indicating that there was a strong correlation between the formation of WHO-12 PCBs and PCDD/Fs in the iron ore sintering process.  相似文献   

6.
The present study was intended to establish an inventory of PCDD/F emissions in Tarragona Province (Catalonia, NE Spain), as a preliminary phase in the development of a flow analysis of PCDD/Fs in this Province. In 1999, global PCDD/F emissions reached a value of 2.24 g I-TEQ/y, which means a density of 3.8 micrograms I-TEQ/inhabitant/y. The low amount of PCDD/Fs emitted to air by the only municipal solid waste incinerator in the Province (approximately 0.04% of the total) has been one of the most notable results. As a reflection of uncertainties in the estimates for individual sources, the 90th percentiles of PCDD/F releases for 1999 ranged up to 4.1 g I-TEQ/y.  相似文献   

7.
In April 1996 and 1998, the concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were determined in 40 herbage samples collected in the neighborhood of a hazardous waste incinerator (HWI) under construction in Constanti (Catalonia, Spain). In April 2000, 20 months after the HWI began operating, herbage samples were again collected at the same sampling points in which samples had been taken in the previous surveys. PCDD/F concentrations ranged between 0.13 and 0.65 ng I-TEQ/kg (dry matter), with a median and mean values of 0.29 and 0.32 ng I-TEQ/kg (dry matter), respectively. The results were compared with those obtained in the 1996 (median, 0.53 ng I-TEQ/kg; mean, 0.61 ng I-TEQ/kg) and the 1998 (median, 0.23 ng I-TEQ/kg; mean, 0.31 ng I-TEQ/kg) surveys. While in the period 1996-1998 a significant decrease (49%, P < 0.001) in the mean PCDD/F levels was noted, in the period 1998-2000 an increase of 3% (P > 0.05) was found in the concentrations of PCDD/Fs. The analysis of the results suggests two potential hypotheses: either the emissions of PCDD/Fs from the HWI are not negligible, or the current PCDD/F emissions from other sources near the HWI remained at similar levels to those reached in 1998. Anyhow, an exhaustive evaluation of the present data shows an absence of notable PCDD/F contamination by the HWI in the area under its direct influence. It seems also probable that the decline in the atmospheric levels of PCDD/Fs due other emission sources of PCDD/Fs in this area is currently stopped.  相似文献   

8.
Abstract

This study investigates the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of two municipal solid waste incinerators (MSWIs: GS and RW) and a coal-fired power plant (PW) in the Kaohsiung County (KC) area in Taiwan. The results show that the toxic equivalency (TEQ) concentration in the flue gas of GS and RW averaged 0.090 and 0.044 ng international toxic equivalents (I-TEQ)/N·m3, respectively. The TEQ concentration in the flue gas of PW averaged 0.050 ng I-TEQ/N·m3. All PCDD/Fs concentrations from the stack flue gas are lower than the Taiwan Environmental Protection Administration emission standard. Furthermore, the mean I-TEQ concentration in the ambient atmosphere ranged from approximately 0.019 to 0.165 pg I-TEQ/N·m3, much lower than the environmental quality standards for dioxins in Japan (0.6 pg TEQ/N·m3). This work classified all sampling sites into three clusters according to k-means cluster analysis. The result shows a probable direct correlation between the GS incinerator and site C. Although the concentration from the PW plant did not exceed the emission standard, it was much higher than that in Fernández-Martínez’s study. For proper environmental management of dioxins, establishing a complete emission inventory of PCDD/Fs is necessary. The government of Taiwan should particularly pay more attention to power plants to address the information shortage.  相似文献   

9.
Steps towards a European dioxin emission inventory   总被引:7,自引:0,他引:7  
Quass U  Fermann MW  Bröker G 《Chemosphere》2000,40(9-11):1125-1129
The results of a project aiming at collection and evaluation of information regarding the industrial and non-industrial emission sources for dioxins and furans (PCDD/PCDF) in 17 European Countries (EU 15, CH, N) are presented. An overview about national documents covering dioxin emission inventories for the period 1990-1995 is given. Some data on emissions associated with residual materials, waste and waste water are presented additionally. Based on the air emission data contained in these documents the most important emission sources were determined which are assumed to cover about 90% of the overall emissions. For the selected sources and for all 17 countries new estimates of the atmospheric PCDD/PCDF emissions were derived from average emission factors and statistical activity rates for the year 1994. As a result, on the European scale the largest annual PCDD/PCDF emission is assessed to be released from municipal waste incineration, quite closely followed by emissions from iron ore sintering. Considerable releases of dioxins and furans--based, however, on highly uncertain data--are further assessed for domestic burning, accidental fires and (former) use of contaminated wood preservatives (pentachlorophenol). A lower but still significant emission is further assigned to the sector of non-ferrous metal production; particular processes used in this branch proved to generate very high PCDD/PCDF flue gas concentrations.  相似文献   

10.
Chang MB  Huang HC  Tsai SS  Chi KH  Chang-Chien GP 《Chemosphere》2006,62(11):1761-1773
Distribution of PCDD/F (polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran) congeners at two electric arc furnaces (EAFs) in Taiwan is evaluated via intensive stack sampling and analysis. Two kinds of exhaust system in EAFs including stack system and shutter system are selected for measuring dioxin emissions. In addition, dioxin emissions during oxidation and reduction stages at EAF-A were characterized. Results indicate that the PCDD/F concentration of stack gas in EAF-A was 4.39 ng/N m3 while total Toxic Equivalent Quantity (TEQ) concentration was 0.35 ng I-TEQ/N m3. The PCDD/F concentration of stack gas in EAF-B was 2.20 ng/N m3 and the TEQ concentration was 0.14 ng I-TEQ/N m3. 1,2,3,4,6,7,8-HpCDF, OCDD and OCDF are the major contributors of the dioxin concentrations for two EAFs investigated and the percentage of PCDD/F in particulate phase increases as the chlorination level of the PCDD/F congener increases. The results obtained on gas/particulate partitioning of PCDD/Fs in flue gases prior to the APCD in EAFs indicate that more than 90% exists in particulate phase. In EAF-A, the PCDD/F concentration during oxidation stage is slightly higher than that measured during reduction stage, including the sampling points of CO converter outlet, prior to bag filter and stack. Majority of PCDD/Fs emitted from steel-making processes exists in particulate-phase (about 60–70%) at both EAFs investigated.  相似文献   

11.
Abad E  Caixach J  Rivera J 《Chemosphere》2003,50(9):1175-1182
This study presents the results of a dioxin abatement programme undertaken in the municipal waste incineration plant of Montcada i Reixac (Barcelona, Spain) after the replacement of an obsolete air cleaning device by a new flue gas treatment system. A number of sampling campaigns were conducted with the aim of characterising stack gas emission levels of polychlorinated dibenzo-p-dioxins (PCDDs)/polychlorinated dibenzofurans (PCDFs) and to evaluate initial specifications of dioxin stack gas emission values below 0.1 ng I-TEQ/Nm(3). Preliminary results revealed levels between 44 and 111 ng I-TEQ/Nm(3) when the gas-cleaning system consisted only of an old electrostatic precipitator (ESP). Decreased levels around 15 ng I-TEQ/Nm(3) were observed when the semi-dry scrubber began to operate and the ESP was switched off. Again, remarkable dioxin removal was observed after the installation of the fabric filter and levels around 0.3-0.4 ng I-TEQ/Nm(3) were soon achieved. Nevertheless, the limit of 0.1 ng I-TEQ/Nm(3) was reached by additional injection of activated carbon which helped to lower PCDD/PCDF levels to around 0.036 ng I-TEQ/Nm(3). The results also demonstrated a significant change in the dioxin distribution present in combustion-derived materials (stack gas emission, bottom ash and solid waste from gas treatment). The major dioxin fraction was found in gaseous matrices before the flue gas control system was upgraded. After this step, the major dioxin fraction content was observed in solid waste from gas treatment.  相似文献   

12.
Alcock RE  Gemmill R  Jones KC 《Chemosphere》1999,38(4):759-770
PCDD/F data are presented from 75 samples of primary emissions sampled between 1995-97 as part of the compliance monitoring survey undertaken by the UK Environment Agency. Municipal solid waste (MSW), chemical waste and clinical waste incinerators, cement kilns, sinter plants and sewage sludge incinerators were the source categories monitored and reported here. Based on this monitoring programme, the previous national UK emission estimates by Eduljee and Dyke (1) of 560-1100 g I-TEQ a(-1) for 1993 have been revised downwards to 220-660 g I-TEQ a(-1). Despite source reduction measures, MSW incinerators remain a significant source of PCDD/Fs to the atmosphere, contributing between 30-50% of the EPCDD/F I-TEQ emission, rather than the approximately 80% they were estimated to contribute in 1993. 2,3,7,8-substituted PCDD/F congener profile data are presented for some of the source categories and generally support the view that differences in the mixtures ('fingerprints') of PCDD/Fs emitted from different sources are observed. New data on the dioxin-like PCB emissions are presented for cement kilns and sinter plants. These show that TEQ-rated PCBs can make an important contribution to the I-TEQ emitted from certain combustion sources. High concentrations of a full range of PCB congeners/homologues have been measured in the atmosphere close to sintering strands, although the precise source of PCBs from this process remains unclear.  相似文献   

13.
Measurements of the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were made in ambient air, ash, and soil impacted by the open burning of wax apple and rice straw residues. Measurements showed that the mean PCDD/F concentration (0.458 pg I-TEQ/Nm3; international toxicity equivalence) in air at two wax apple orchards during open burning increased markedly, -8.1 times higher than that (0.057 pg I-TEQ/Nm3); before open burning. In addition, the mean PCDD/F concentration (0.409 pg I-TEQ/Nm3) in ambient air at a rice straw field was 4.6 times higher than that (0.089 pg I-TEQ/Nm3) before open burning. After burning the residues of wax apple stubble and rice straw, the contents of PCDD/F in ashes were 1.393 and 1.568 ng I-TEQ/kg-ash, respectively, and the contents of PCDD/F in soil were 2.258 and 2.890 ng I-TEQ/kg-soil, respectively. Therefore, the turnover of soil with the ash after open burning over years will result in the accumulation of PCDD/Fs in farm soils.  相似文献   

14.
The levels of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were determined in soil and vegetation samples taken from 24 sites in the vicinity of an old municipal solid waste incinerator (San Adrià del Besòs, Barcelona, Spain). Duplicate samples were collected within a radius of 3 km from the stack. PCDD/F concentrations in soils ranged from 1.22 to 34.28 ng I-TEQ/kg (d.m.) with median and mean values of 9.06 and 12.24 ng I-TEQ/kg, respectively. In turn, the levels of PCDD/Fs in vegetation samples ranged from 0.33 to 1.98 ng I-TEQ/kg (d.m.), with median and mean values of 0.58 and 0.70 ng I-TEQ/kg, respectively. Although the present PCDD/F concentrations in soil samples were higher than those recently found in soils taken near other incinerators from Catalonia, they are of the same order of magnitude than the levels of these pollutants found in incinerators from other countries. By contrast, the concentrations of PCDD/Fs in herbage samples were comparable to those found in recent surveys carried out in Catalonia.  相似文献   

15.
Lee SJ  Choi SD  Jin GZ  Oh JE  Chang YS  Shin SK 《Chemosphere》2007,68(5):856-863
Municipal solid waste incinerators (MSWIs) have been shown to be important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The emission of PCDD/Fs by MSWIs is a controversial subject in human health risk assessment. In this study the effect of a MSWI on a residential area was assessed before and after the installation of an additional treatment system for flue gas. This additional treatment system resulted in a dramatic decrease in PCDD/F concentrations in stack flue gas samples by 99.98%, while the concentrations in air decreased by approximately 50% (36,500 and 0.75 pg I-TEQ m(-3) for air in 1999; 3.5 and 0.38 pg I-TEQ m(-3) in 2002; 1.6 and 0.076 pg I-TEQ m(-3) in 2005 for stack gas and air, respectively). Considering the congener distributions of PCDD/Fs between stack flue gas and air samples, the study area seemed to have been contaminated by other urban sources as well as the MSWI. ISC3 model results support the conclusion that this incinerator became only a minor contributor to the study area after installation of the supplementary systems. This resulted from both proper MSWI operation using modern technology and additional sources of contaminants in this region. Finally, PCDD/F uptake by humans through inhalation of contaminated air was estimated. Assuming that inhalation exposure contributes 10% of total exposure, total exposure was lower than WHO guidelines. These results confirm that proper operation and maintenance of the incinerator led to a reduction in emissions and potential health impacts of PCDD/Fs.  相似文献   

16.
Estonia still has no waste incineration facilities, which would act as substantial sources of dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) pollution. As landfill fires may serve as sources of dioxins, we focused on the concentrations of PCDD and PCDF in soil samples taken in the vicinity of the landfill located at south-east Estonia in the course of our inventory. Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were studied in five soil samples taken in the vicinity of the Laguja landfill in south-east Estonia. The four soil samples were taken in southern, eastern, western and northern parts not further than 300 m from the landfill, and one sample was taken at the distance of 3 km from the landfill. The PCDD/F concentrations in all soil samples were at background level (0.64-2.33 pg I-TEQ WHO/g dry weight). To maintain this situation, the administrator of the landfill must avoid landfill fires, which are one of the reasons for the generation of dioxins and furans.  相似文献   

17.
Abstract

This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 °C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 μg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 μg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

18.
测定了流化床垃圾焚烧炉焚烧产生的飞灰、烟尘和烟气中的2,3,7,8位氯取代二噁英同类物的含量及其毒性当量。结果表明,产生的二噁英主要存在于飞灰中,烟气中的含量很少。飞灰中二噁英总浓度和毒性当量分别为8.44ng/g和0.80ng/g,经过布袋除尘器后的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为0.34ng/m^3和0.02ng/m^3,而布袋除尘器前的烟尘和烟气中二噁英的浓度之和与毒性当量之和分别为40.78ng/m^3和3.0ng/m^3。飞灰和烟尘中2,3,7,8位氯取代二噁英同类物的分布相似,但是与烟气中2,3,7,8位氯取代二噁英同类物的分布差别较大。通过了解有毒二噁英同类物的分布,可以进一步优化流化床垃圾焚烧炉的焚烧条件,降低二噁英的排放量,减少垃圾焚烧对环境的污染。  相似文献   

19.
The production of cement in China is accompanied by various emissions, such as fine particulate matter, heavy metals, nitrogen oxides, sulfur oxides, carbon dioxide…. Moreover, cement kiln presents a potential health risk to its surroundings, linking to emissions of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in brief dioxins. Flue gas samples were collected from five typical cement kilns during twelve runs and were used to evaluate the levels and distribution of PCDD/Fs in the emissions from cement kilns. The PCDD/Fs concentrations (136 congeners) and I-TEQ values ranged from 2.3 to >40 ng/m3 and 9.3?~?90.8?×?10?3 ng I-TEQ/m3, respectively, which were lower than the emission standard in China (0.1 ng I-TEQ/m3). In weight units, the dominant congeners were OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF; 2,3,4,7,8-PeCDF is the largest contributor (36–66 %) to the total I-TEQ value of twelve runs. HxCDF and TCDF were the first two most abundant homologue groups (12–85 and 4–52 %), and the homologue concentration decreased with rising chlorine number for PCDDs. In addition, there was no marked difference in homologue profiles when solid wastes (refuse-derived fuel and municipal solid waste) and hazardous wastes (DDT and POPs) were combusted as supplemental fuels. The use of various supplemental fuels had no obvious effect on the fingerprint of PCDD/F homologues. Moreover, there was no significant difference in levels of PCDD/Fs emission due to the diversity of production capacity, which were consistent with reported previously. Air pollution control device had effect on the homologue profiles, and cement system with electrostatic precipitators (ESP) had more fractions of octachloro congeners to the total.  相似文献   

20.
Annual emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from open burning of crop residues in each province of China mainland between 1997 and 2004 were estimated to be ranged from 1.38x10(3) to 1.52x10(3) g I-TEQ/yr, with the average of 1.50+/-0.08x10(3) g I-TEQ/yr, which contributed to approximately 10% approximately 20% of the total emissions in China. The PCDD/F emissions mainly occurred in the largest crop-producing provinces, especially in those of higher economic levels. The major sources of PCDD/F emissions from open burning in China were found to be cereal residues (i.e. rice, wheat, and corn), which accounted about 70% of the total emissions. Moreover, the first-order one-variable grey differential equation model (GM (1,1) model) for annual emissions of PCDD/Fs was established based on grey system theory. The GM (1,1) model was proved to be robust to predict the annual PCDD/F emissions from crop residue field burning in forthcoming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号