首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical characterizations of soluble aerosols in southern China   总被引:14,自引:0,他引:14  
Wu D  Tie X  Deng X 《Chemosphere》2006,64(5):749-757
Soluble aerosols are measured at Guangdong and Hainan Provinces of southern China. The measured chemical composition of aerosols includes F-, Cl-, NO3-, SO4=, Na+, NH4+, K+, Ca2+, and Mg2+. The locations of measurements include a mega city (Guangzhou), a medium city along the coastline (Haiko), a small city along the coastline (Shanya), and a remote island site in the South China Sea (Yongxing island). The results reveal that aerosols in this region are complex and heterogeneous. Sulfate aerosol (SO4=) has the highest concentrations in Guangzhou (approximately 41% of total soluble aerosol mass), suggesting that anthropogenic activities (e.g., coal burning) play important roles in controlling aerosol concentrations in Guangzhou. By contrast, the concentrations of chlorine (Cl-) and sodium (Na+) are higher in Yongxing than in Guangzhou, indicating that the sea salt is the dominant aerosol in this marine environment site. In the medium (Haiko) and small (Shanya) city sites, the effects of anthropogenic and marine activities on aerosols fall in between the values in the mega city and the remote island site. The measured ratio of Cl-/Na+ shows that the ratio is less than 1.16 in all observation sites. The ratio in the Guangzhou city, the Haiko city, the Shanya city, and the Yongxing island is 0.52, 0.91, 0.24, and 0.53, respectively, indicating that significantly heterogeneous chemical reactions occur on sea salt particles. Unlike those in Europe and North America, there are high concentrations of calcium (Ca+) in all observation sites. The percentage of calcium mass to the measured total soluble aerosols mass is 21, 32, 34, and 30 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The calculations show that calcium plays an important role in neutralizing aerosols. The calculated "cation/anion" (summation operator[ion+]/summation operator[ion-]) ratio is 2.5, 2.5, 3.2, and 2.1, at Guangzhou, Haiko, Shanya, and Yongxing, respectively. The high "cation/anion" ratios suggest that SO4=, NO3-, and Cl- are neutralized, and the aerosols as a whole (internally mixed), appear to be in an alkaline mode in this region. However, without taking into account for calcium, the calculated "cation/anion" ratio reduces to 1.2, 0.98, 1.3, and 0.8 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The property of aerosols switches from an alkaline mode to an acidity mode at the Haiko and Yongxing sites.  相似文献   

2.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   

3.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

4.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

5.
Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.  相似文献   

6.
Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

7.
K F Chang  G C Fang  C S Lu  H L Bai 《Chemosphere》2001,45(6-7):791-799
Ambient air particle concentrations were sampled by two total suspended particle (TSP) samplers, PM10/PM2.5 specific sampler and micro-orifice uniform deposit impactor (MOUDI) during July-October 2000 at a traffic sampling site in central Taiwan. The average TSP concentration (194 microg/m3) was about a factor of two higher than that of the fraction <2.5 microm (93.2 microg/m3). The mean level of the fraction <10 microm collected by MOUDI (93.2 microg/m3) was about 1 1/2 times higher than that of the size class <2.5 microm (43.8 microg/m3). Furthermore, this fraction showed a certain correlation with the TSP concentration. The particle size distribution was bimodal in the ambient air at the traffic site. The major peaks appear at particle diameters between 0.56-1.0 and 3.2-5.6 microm. The percentages of anions contained in TSP were 0.24% F-, 13.7% Cl, 0.52% Br, 12.0% NO-, 18.9% NO2-, and 54.6% SO2-. The Cl-, NO2-, and NO3- size distributions were all unimodal and the major peaks appeared at 3.2-5.6 microm. The SO2 size distribution was bimodal, with major peaks at 0.32-0.56 and 3.2-5.6.  相似文献   

8.
Chemical coupling between ammonia, acid gases, and fine particles   总被引:2,自引:0,他引:2  
The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.  相似文献   

9.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   

10.
Airborne particulate matter (PM10, PM2.5, PM1) and volatile organic compounds (benzene, toluene, m,p-xylene, o-xylene) samples were collected during winter and summer seasons of 2005 at two sites, representing an urban and a suburban region of the Greater Athens Area. Urban site traffic emissions were the major contributor to the concentration of PM2.5, PM10, toluene, and xylenes, while benzene and PM1 concentrations were presented in significant spatial variations. K+, Na+, Mg2+, Ca2+, NO3-, Cl- and SO42- ions were analyzed for the chemical characterization of the collected PM samples. The results showed that Na+ cations and SO42- anions were the dominant species, during winter and summer, respectively, in both sites. The analysis of the synoptic scale and mesoscale atmospheric circulation during the experimental periods demonstrated that the meteorological conditions play a key role, not only in the variation but also in the distribution of the ionic concentrations at the three fractions of particulates and the dominant character (alkaline/acidic/neutral) of the particulates at the two sampling sites.  相似文献   

11.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

12.
Chen SJ  Hsieh LT  Tsai CC  Fang GC 《Chemosphere》2003,53(1):29-41
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days.  相似文献   

13.
An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

14.
Several collocated semicontinuous instruments measuring particulate matter with particle sizes < or =2.5 microm (PM2.5) sulfate (SO4(2-)) and nitrate (NO3-) were intercompared during two intensive field campaigns as part of the PM2.5 Technology Assessment and Characterization Study. The summer 2001 urban campaign in Queens, NY, and the summer 2002 rural campaign in upstate New York (Whiteface Mountain) hosted an operation of an Aerosol Mass Spectrometer, Ambient Particulate Sulfate and Nitrate Monitors, a Continuous Ambient Sulfate Monitor, and a Particle-Into-Liquid Sampler with Ion Chromatographs (PILS-IC). These instruments provided near real-time particulate SO4(2-) and NO3- mass concentration data, allowing the study of particulate SO4(2-)/NO3- diurnal patterns and detection of short-term events. Typical particulate SO4(2-) concentrations were comparable at both sites (ranging from 0 to 20 microg/m3), while ambient urban particulate NO3- concentrations ranged from 0 to 11 microg/m3 and rural NO3- concentration was typically less than 1 microg/m3. Results of the intercomparisons of the semicontinuous measurements are presented, as are results of the comparisons between the semicontinuous and time-integrated filter-based measurements. The comparisons at both sites, in most cases, indicated similar performance characteristics. In addition, charge balance calculations, based on major soluble ionic components of atmospheric aerosol from the PILS-IC and the filter measurements, indicated slightly acidic aerosol at both locations.  相似文献   

15.
2010年10月至2011年9月采集百色市右江区大气PM10样品,分析PM10及其水溶性无机离子的化学特征与来源。结果表明:(1)百色市右江区大气PM10为13.89~319.44μg/m3,年均117.48μg/m3,年均值超过《环境空气质量标准》(GB 3095-2012)二级标准(100μg/m3)。百色市右江区大气可吸入颗粒物的污染主要出现在春冬季节。(2)水溶性无机离子浓度年均值依次为SO24->NO3->Cl->NH4+>K+>Na+>Mg2+>F-,SO24-、NO3-和Cl-浓度最高,分别占水溶性无机离子的57.7%、14.9%和14.5%。(3)百色市右江区大气PM10呈较强的酸性,高浓度的SO42-可能是导致百色市右江区大气PM10呈较强酸性的主要原因。(4)PM10的季节变化受气温和风速的影响极显著;气象因素对SO42-、NO3-、F-的影响不显著。(5)主因子分析表明,PM10中水溶性无机离子可能来自3个方面,Cl-和NO3-主要来自于当地低烟卤煤燃烧排放的烟气;Mg2+、K+和Na+主要来自于自然源;F-、SO24-和NH4+主要来自于混合源。  相似文献   

16.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

17.
The use of prescribed fire is expected to increase in an effort to reduce the risk of catastrophic fire, particularly at urban/forest interfaces. Fire is a well-known source of particulate matter (PM) with particle sizes < or =2.5 microm (PM2.5), small diameter PM known to affect climate, visibility, and human health. In this work, PM2.5 was collected during seven first-entry burns (flaming and smoldering stages) and one maintenance burn of the Coconino National Forest. Samples were analyzed for organic and elemental carbon, cations (sodium, potassium [K+], and ammonium [NH4+]), anions (nitrate [NO3-] and sulfate), and 48 elements (with atomic weights between sodium and lead). The PM2.5 contained high organic carbon levels (typically >90% by mass), commonly observed ions (K+, NH4+, and NO3-) and elements (K+, chlorine, sulfur, and silicon), as well as titanium and chromium. Flaming produced higher K+ and NH4+ levels than smoldering, and the elemental signature was more complex (20 versus 7 elements). Average organic carbon x 1.4 mass fractions (+/-standard deviation) were lower during flaming (92+/-14%) than during smoldering (124+/-24%). The maintenance (grassland) burn produced lower particle concentrations, lower NH4+ and NO3- levels, and higher K and chlorine levels than did the first-entry fires.  相似文献   

18.
Atmospheric concentrations of gaseous NH3 and HNO3 and of particulate NH4+ and NO3- were measured during various seasons at a forest ecosystem research site in the "Fichtelgebirge" mountains in Central Europe. Air masses arriving at this site were highly variable with respect to trace compound concentration levels and their concentration ratios. However, the distributions of NH4+ and NO3- within the aerosol particle size spectra exhibited some very consistent patterns, with the former dominating the fine particle concentrations, and the latter dominating the coarse particles range, respectively. Overall, the particulate phase (NH4+ + NO3-) dominated the atmospheric nitrogen budget (particulate and gas phase, NH4+ + NO3- + NH3 + HNO3) by more than 90% of the median total mixing ratio in winter, and by more than 60% in summer. The phase partitioning varied significantly between the winter and summer seasons, with higher relative importance of the gaseous species during summer, when air temperatures were higher and relative humidities lower as compared to the winter season. Reduced nitrogen dominated over oxidized nitrogen, indicating the prevailing influence of emissions from agricultural activity as compared to traffic emissions at this mountainous site. A model has been successfully applied in order to test the hypothesis of thermodynamic equilibrium between the particulate and gas phases.  相似文献   

19.
Observations of the mass and chemical composition of particles less than 2.5 microm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4(2-)) and carbonaceous material in PM2.5 were each approximately 50% for cleaner air (PM2.5< 10 microg/m3) but changed to approximately 60% and approximately 20%, respectively, for more polluted air (PM2.5>30 microg/m3). This signifies the role of SO4(2-) in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4(2-) is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 +/- 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached approximately 45 microg/m3, visual range dropped to approximately 5 km, and aerosol water likely contributed to approximately 40% of the light extinction coefficient.  相似文献   

20.
In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM2.5 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM2.5), NO3- (23-26% of PM10 and 28-41% of PM2.5), SO4- (6-11% of PM10 and 9-18% of PM2.5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM2.5). On an annual average basis, PM2.5 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 micrograms/m3 at Anaheim to 76.8 micrograms/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 micrograms/m3 at Anaheim to 39.8 micrograms/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号