首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.  相似文献   

2.
Abstract:  Although primary productivity in salt marshes is thought to be controlled by physical forces, recent evidence suggests that human disturbances can drive a switch to consumer control in these ecologically valuable ecosystems. We tested the hypothesis that nitrogen enrichment can trigger consumer control in salt marshes in Narragansett Bay, Rhode Island, with (1) a field experiment in which we manipulated nutrient availability (with nutrient additions) and insect herbivory (with insecticide application), (2) a survey of 20 salt marshes that examined the relationship between marsh nutrient status and herbivore pressure, and (3) insect herbivore removal at high and low nutrient input sites to directly test the hypothesis that nutrient enrichment is increasing insect herbivory in these marshes. Experimental nitrogen eutrophication initially increased plant productivity but eventually led to reduced plant biomass due to insect herbivory, and our surveys revealed that marsh nitrogen supply was a good predictor of herbivore damage to plants. Insects had minimal impacts on primary productivity in pristine marshes, but suppressed primary productivity in eutrophic salt marshes by 50–75%. Thus, eutrophication is currently triggering consumer suppression of primary productivity in New England salt marshes and may ultimately jeopardize the ecological and societal services these systems provide.  相似文献   

3.
盐沼植物群落研究进展:分布、演替及影响因子   总被引:2,自引:0,他引:2  
盐沼是全球温带及亚热带地区的主要滨海湿地类型之一,在我国分布广泛。盐沼湿地生态系统敏感、脆弱且具有重要的生态系统服务功能。理解盐沼植物群落时空分布动态的一般规律与生态学机制,是开展盐沼生态系统研究的基础与关键。海陆交界的特殊环境特征是影响盐沼湿地植物群落的空间分布及演替过程的主要因素。在海洋潮汐作用下,盐沼湿地中的盐度、水淹强度、氧化还原电位等非生物因子往往呈梯度分布,这也导致了生物群落中种内、种间关系的变化。在非生物及生物因子的共同作用下,盐沼植物群落也往往沿高程梯度呈带状分布。环境变化是盐沼植物群落演替的驱动因素,在海岸线相对较为稳定的盐沼,植物群落的演替多属自发演替,而在靠近的大型河口的一些持续淤涨的盐沼,植物群落演替通常属于异发演替。沿海地区的水产业、流域上游及沿海地区的工程、污染及生物入侵等直接或间接的人类活动已对盐沼湿地植物群落的产生了深刻影响。经过数十年发展,国际上盐沼植物群落学研究的热点领域主要包括盐沼植物群落与其他生物群落的相互关系、植物群落在盐沼生态系统过程中的作用等。在全球变化背景下,盐沼植物群落对气候变化与海平面升高也日益成为盐沼植物群落学相关的热点。  相似文献   

4.
Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea‐level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18‐year marsh‐bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea‐level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (?2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from ?4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea‐level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future.  相似文献   

5.
滨海盐沼及其植物群落的分布与多样性   总被引:1,自引:0,他引:1  
贺强  安渊  崔保山 《生态环境》2010,19(3):657-664
滨海盐沼是广泛存在于世界中、高纬度地区的一种湿地生态系统,具有抵御风暴潮灾害、净化污染物和为珍稀濒危生物提供适宜生境等重要的生态和经济价值。滨海盐沼因随高程变化而急剧变化的环境梯度和植物带状分布现象而为生态学者阐释自然界物种的分布机制提供了理想系统。主要概述了滨海盐沼的定义、特点、类型、全球分布以及潮汐作用、土壤盐度等环境因子特征;阐述了不同尺度下滨海盐沼的植物群落分布和多样性特征。在滨海盐沼植物群落的分布特征上,重点阐述了中尺度下的植物带状分布,即植物群落往往在白海向陆渐高的不同高程梯度上表现出显著的分带分布,不同植物各自占据该梯度上的一定区域。通常认为,带状分布是植物竞争和物理性胁迫共同调控的结果,但其在不同地理区域的普适性仍存争议。滨海植物群落多样性往往较低,在中、小尺度上盐沼植物多样性受控于盐度、潮汐等物理性胁迫、植物间相互作用等因子的作用;在大尺度上盐沼植物多样性可能随纬度增大而增加。系统深入地认识滨海盐沼植物群落生态格局和过程,将为气候变化、生物入侵等人类影响下的滨海盐沼生态系统的管理和恢复提供有益经验。  相似文献   

6.
Coastal areas are among the world's most productive and highly affected ecosystems. Centuries of human activity on coastlines have led to overexploitation of marine predators, which in turn has led to cascading ecosystem‐level effects. Human effects and approaches to mediating them, however, differ regionally due to gradients in biotic and abiotic factors. Salt marsh die‐off on Cape Cod, Massachusetts (U.S.A.), triggered by a recreational‐fishing‐induced trophic cascade that has released herbivorous crabs from predator control, has been ongoing since 1976. Similar salt marsh die‐offs have been reported in Long Island Sound and Narragansett Bay (U.S.A.), but the driving mechanism of these die‐offs has not been examined. We used field experiments to assess trophic interactions and historical reconstructions of 24 New England marshes to test the hypotheses that recreational fishing and predator depletion are a regional trigger of salt marsh die‐off in New England and that die‐offs in Long Island Sound and Narragansett Bay are more recent than those on Cape Cod. Predator depletion was the general trigger of marsh die‐off and explained differences in herbivorous crab abundance and the severity of die‐off across regions. Die‐offs in Long Island Sound and Narragansett Bay are following a trajectory similar to die‐off on Cape Cod, but are approximately 20 years behind those on Cape Cod. As a result, die‐off currently affects 31.2% (SE 2.2) of low‐marsh areas in Long Island Sound and Narragansett Bay, less than half the severity of die‐off on Cape Cod. Our results contribute to the growing evidence that recreational fishing is an increasing threat to coastal ecosystems and that studying the effects of human activity at regional scales can provide insight into local effects and aid in early detection and potential remediation. Ontogenia Regional de un Incremento en la Mortandad en una Marisma Salada de Nueva Inglaterra  相似文献   

7.
The supply of freshwater to estuarine ecosystems is a critical factor in maintaining the overall health and organization of coastal marshes. Specifically along the Texas Gulf coast, the coupled effects of decreased freshwater inflows to the estuary and natural processes (e.g., precipitation, wind, and tides) can exert significant salt-stress on coastal marsh vegetation. In this project we sought to quantitatively link the inflow of freshwater to the estuary (San Antonio Bay) with Aransas National Wildlife Refuge (ANWR) coastal marsh salinity and assess the influence of salinity and inundation on Carolina wolfberry (Lycium carolinianum Walt.) phenology (leaf and fruit abundance). The Carolina wolfberry is one of the more common high marsh plant species found at ANWR and has been shown to be a key food source for endangered Whooping Cranes which inhabit the coastal marshes of the ANWR each fall/winter. Results from our study show that periods of decreased freshwater inflows to the estuary correlated with increased marsh salinity at the ANWR. Wolfberry plants at ANWR marsh sites displayed increased fruit abundance during years which had lower mean summer time salinity (June, July, and August) in San Antonio Bay; conversely, during years of increased bay salinity during the same summertime months, wolfberry plants showed decreased fruit abundance. Through the continued validation of the relationship between inflows and coastal marsh salinity, we hope to provide additional insight into how wolfberry phenology varies inter-annually across both salinity and inundation regimes and how freshwater inflows may affect food availability for the endangered Whooping Crane.  相似文献   

8.
Abstract:  Climate change is projected to increase stress for many coastal plant communities. Along large portions of the North American coast, habitat degradation from anthropogenic changes to the environment already threaten the community structure of tidal marshes and submerged aquatic grass beds. The potential loss of ecological services historically provided by these communities has been a long-standing rationale for aggressive control of invading plants such as Phragmites australis and Hydrilla verticillata . Increasing evidence of ecological services provided by invasive species such as P. australis and H. verticillata suggest that, in the face of increasing stress, it may be prudent to take a more pragmatic approach regarding the effect of these species on coastal ecosystems. The notable resilience of these species to control efforts and their competitive success and comparative vigor in stressed systems and capacity to provide at least some beneficial services combine to suggest some invasive species may have a useful role in managed coastal ecosystems.  相似文献   

9.
Crain CM  Albertson LK  Bertness MD 《Ecology》2008,89(10):2889-2899
Secondary succession plays a critical role in driving community structure in natural communities, yet how succession dynamics vary with environmental context is generally unknown. We examined the importance of seedling and vegetative recruitment in the secondary succession of coastal marsh vegetation across a landscape-scale environmental stress gradient. Replicate bare patches were initiated in salt, brackish, and oligohaline marshes in Narragansett Bay, Rhode Island, USA, and allowed to recover unmanipulated or with colonizing seedlings or vegetative runners removed for three years. Seed dispersal and seed bank studies were conducted at the same sites. We found that rates of recovery were 3-10 times faster in brackish and oligohaline marshes than in salt marshes. The fast pace of recovery in oligohaline marshes was driven by seedling colonization, while recovery was dominated by vegetative runners in brackish marshes and by both seedlings and runners in salt marshes. Seed and seedling availability was much greater in oligohaline marshes with up to 24 times the seed bank density compared with salt marshes. In contrast to the facilitated succession generally found in salt marshes, oligohaline marshes follow the tolerance model of succession where numerous species colonize from seed and are slowly displaced by clonal grasses whose recovery is slowed by preemptive competition from seedlings, contributing to the higher species diversity of oligohaline marshes. These findings reveal fundamental differences in the dynamics and assembly of marsh plant communities along estuarine salinity gradients that are important for conceptually understanding wetlands and for guiding the management and restoration of various types of coastal marshes.  相似文献   

10.
In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m2 in San Francisco Bay, and 361 and 1153 individuals per 0.25 m2 in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded. Received: 30 March 2000 / Accepted: 21 September 2000  相似文献   

11.
This paper presents the results from a study which was undertaken to monitor, map and quantify salt marsh change along 440 km of shoreline within the county of Essex, south-east England, between 1973 and 1998. Results indicate that during this 25-yr period, 1000 ha of salt marsh has been lost in Essex, primarily due to coastal erosion. This figure represents ca. 25% of the total salt-marsh area originally present in Essex in 1973. The salt marshes of Essex are important nature conservation areas, with many sites designated as Special Protection Areas under the EC Birds Directive (79/409/EEC) and as Special Areas of Conservation under the EC Habitats Directive (92/43/EEC). Salt marshes are also natural features which significantly dissipate wave and tidal energy, thereby playing an important role in contributing to effective coastal defence. The large-scale loss of salt marsh in Essex has, therefore, implications for both nature conservation and flood defence. Potential hypotheses for, and implications of such losses are discussed in this paper, together with the identification of potential management approaches to alleviate the losses.  相似文献   

12.
Abstract: Hydrothermal vents are deep‐sea ecosystems that are almost exclusively known and explored by scientists rather than the general public. Continuing scientific discoveries arising from study of hydrothermal vents are concommitant with the increased number of scientific cruises visiting and sampling vent ecosystems. Through a bibliometric analysis, we assessed the scientific value of hydrothermal vents relative to two of the most well‐studied marine ecosystems, coral reefs and seagrass beds. Scientific literature on hydrothermal vents is abundant, of high impact, international, and interdisciplinary and is comparable in these regards with literature on coral reefs and seagrass beds. Scientists may affect hydrothermal vents because their activities are intense and spatially and temporally concentrated in these small systems. The potential for undesirable effects from scientific enterprise motivated the creation of a code of conduct for environmentally and scientifically benign use of hydrothermal vents for research. We surveyed scientists worldwide engaged in deep‐sea research and found that scientists were aware of the code of conduct and thought it was relevant to conservation, but they did not feel informed or confident about the respect other researchers have for the code. Although this code may serve as a reminder of scientists’ environmental responsibilities, conservation of particular vents (e.g., closures to human activity, specific human management) may effectively ensure sustainable use of vent ecosystems for all stakeholders.  相似文献   

13.
Bouma TJ  De Vries MB  Herman PM 《Ecology》2010,91(9):2696-2704
Many ecosystems are greatly affected by ecosystem engineering, such as coastal salt marshes, where macrophytes trap sediment by reducing hydrodynamic energy. Nevertheless, little is known about the costs and benefits that are imposed on engineering species by the traits that underlie their ecosystem engineering capacity. We addressed this topic by comparing ecosystem engineering efficiency defined as the benefit-cost ratio per unit of biomass investment for two species from the intertidal habitat: the stiff grass Spartina anglica and the flexible grass Puccinellia maritima. These species were selected for their ability to modify their habitat by trapping large quantities of sediment despite their contrasting growth form. On a biomass basis, dissipation of hydrodynamic energy from waves (a proxy for benefits associated with ecosystem engineering capability as it relates to the sediment trapping capability) was strikingly similar for both salt marsh species, indicating that both species are equally effective in modifying their habitat. The drag forces per unit biomass (a proxy for costs associated with ecosystem engineering ability as it relates to the requirements on tissue construction and shoot anchoring to prevent breaking and/or washing away) were slightly higher in the species with flexible shoots. As a result, stiff Spartina vegetation had slightly higher ecosystem engineering efficiency, due to lower engineering costs rather than to a higher engineering effect. Thus, Spartina is a slightly more efficient rather than a more effective ecosystem engineer. Ecosystem engineering efficiency was found to be a species-specific characteristic, independent of vegetation density and relatively constant in space. Analyzing ecosystem engineering by quantifying trade-offs offers a useful way toward developing a better understanding of different engineering strategies.  相似文献   

14.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   

15.
Salt marsh development on the coastal barrier island of Schiermonnikoog (The Netherlands) was compared with two other salt marsh systems in the Wadden Sea. Accretion rate, nitrogen accumulation and changes in plant species composition were investigated using chronosequences. The age of the marsh was estimated from aerial photographs and old maps. In 7230 plots, the elevation of the marsh surface, the thickness of the sediment layer (clay) and the presence of plant species was recorded. In addition, the nitrogen pool was measured at each successional stage. Accretion rates were similar in the three salt marshes. Higher accretion rates were found at younger marshes. A strong linear relationship between nitrogen pool size and thickness of the clay layer was found for the three marshes. The accumulation rate of nitrogen is therefore strongly related to the accretion rate. Thus, more nitrogen is present in the sediment of later successional stages where more clay has accumulated. On the high salt marsh (55 cm+MHT),Ameria maritima disappeared andArtemisia maritima, Juncus gerardi andElymus athericus established at sites with a thicker clay layer. On the low salt marsh (25 cm+MHT),Plantago maritima, Puccinellia maritima andLimonium vulgare disappeared andAtriplex (Halimione) portulacoides established. Apparently, with the accumulation of clay and therefore of nitrogen, tall growing species take over in salt marshes not grazed by livestock.  相似文献   

16.
Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking density due to differences in the behaviour of the animals. Yet, little is known about the behaviour of different livestock species and stocking densities grazing in salt marshes. We studied the grazing behaviour of horses and cattle by focal observation in an experiment with four different grazing treatments on a coastal salt marsh. In all treatments we recorded diet choice, movement and grazing activity, and spatial distribution. Livestock species shared an overlap in diet choice. Yet, horses more often foraged on the short grass Puccinellia maritima, while the cattle diet contained a higher amount of Aster tripolium. Horses travelled longer distances per day and spent more time grazing than cattle. Spatial distribution of cattle was significantly clustered, while horses showed a random distribution utilizing the whole area. Animal behaviour differs between livestock species and stocking densities with respect to diet choice, activity and spatial distribution.  相似文献   

17.
The human history of coastal regions around the world has been under assault for decades, from forces that include dam building, coastal modifications, the destruction of wetlands, marine erosion, population growth and rampant development, looting, and other processes. Global warming will exacerbate the destruction of cultural resources in coastal zones through accelerated sea level rise, intensified storm cycles, and related coastal erosion. Although average global sea levels have been rising for ∼20,000 years, they slowed dramatically about 7,000 years ago. Rates of sea level rise now appear to be increasing rapidly due to growing anthropogenic emissions of carbon dioxide and other greenhouse gases. Global warming and rising seas, especially when combined with population growth and the implementation of measures designed to protect endangered coastal properties, threaten the deep maritime history of human migrations, settlement, and adaptations in coastal areas around the world. Ranging in age from the mid-Pleistocene to recent historic times, coastal archaeological sites contain invaluable data on ancient coastal societies, fisheries, and ecosystems. Archaeologists, historians, and other cultural resource managers must do more to anticipate, evaluate, and mitigate the effects of global warming, sea level rise, and coastal erosion on the long history of human maritime cultures.  相似文献   

18.
Abstract: The salt marsh harvest mouse, Reithrodontomys raviventris , is endemic to the marshes of San Francisco Bay. Ultimate factors such as rising sea level and tectonic changes will play important roles in the future management of the mouse, causing a shift from tidal marshes threatened by submergence to diked marshes threatened by development Land values and government regulations force the United States Fish and Wildlife Service and other agencies into proximate management strategies to recover the species. Whether large enough areas of diked marsh can be acquired in the near future to adequately protect the mouse in perpetuity is questioned.  相似文献   

19.
After the deceleration of the postglacial marine transgression, the German North Sea coast was subject to deposition of a complex pattern of subtidal to terrestrial facies. This study aims at reconstructing these facies changes in the ‘Land Wursten’ region (Lower Saxony) by focussing on so-called dwog horizons (incipient soil horizons of the pre-engineered salt marshes). We explore their implications for relative sea-level reconstructions and their indication for early settlement activities. Archive drilling data (1960, provided by the ‘Landesamt für Bergbau, Energie und Geologie’) were analysed to create five high-resolution stratigraphic cross sections. Three new drilling records were subjected to sedimentological and microfaunal investigations and interpreted to verify and calibrate the archive data. Two dwog horizons were found and 14C-AMS dated. We found basal salt marsh deposits inundated by a high-energy event and covered by tidal flat sediments. The thick tidal flat unit is again overlain by salt marsh deposits indicating the transition from a shallow marine to a terrestrial environment where dwogs were developed and covered by episodic marine incursions. The ages of the dwogs (1128–969 cal BC; cal AD 1426–1467) do not correlate with known layers of adjacent settlement sites and are critically discussed. However, we show that they correlate with phases of stagnant regional relative sea level (RSL) and can be used as RSL indicators. The combined archive and modern data provide valuable information for the RSL reconstruction and palaeoenvironmental changes. However, further research is recommended to accomplish more detailed information about coastal response during the Holocene sea-level changes and implications for settlement dynamics.  相似文献   

20.
Abstract:  The reed Phragmites australis Cav. is aggressively invading salt marshes along the Atlantic Coast of North America. We examined the interactive role of habitat alteration (i.e., shoreline development) in driving this invasion and its consequences for plant richness in New England salt marshes. We surveyed 22 salt marshes in Narragansett Bay, Rhode Island, and quantified shoreline development, Phragmites cover, soil salinity, and nitrogen availability. Shoreline development, operationally defined as removal of the woody vegetation bordering marshes, explained >90% of intermarsh variation in Phragmites cover. Shoreline development was also significantly correlated with reduced soil salinities and increased nitrogen availability, suggesting that removing woody vegetation bordering marshes increases nitrogen availability and decreases soil salinities, thus facilitating Phragmites invasion. Soil salinity (64%) and nitrogen availability (56%) alone explained a large proportion of variation in Phragmites cover, but together they explained 80% of the variation in Phragmites invasion success. Both univariate and aggregate (multidimensional scaling) analyses of plant community composition revealed that Phragmites dominance in developed salt marshes resulted in an almost three-fold decrease in plant species richness. Our findings illustrate the importance of maintaining integrity of habitat borders in conserving natural communities and provide an example of the critical role that local conservation can play in preserving these systems. In addition, our findings provide ecologists and natural resource managers with a mechanistic understanding of how human habitat alteration in one vegetation community can interact with species introductions in adjacent communities (i.e., flow-on or adjacency effects) to hasten ecosystem degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号