首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large number of hazardous compounds can be expected to be present in landfill leachates, many of which have not yet been identified. Thus this study screened samples from 12 Swedish municipal landfill sites for 400 parameters and compounds. More than 90 organic and metal organic compounds and 50 inorganic elements were detected, some of which seem to have not been detected before. Compounds detected include halogenated aliphatic compounds, benzene and alkylated benzenes, phenol and alkylated phenols, ethoxylates, polycyclic aromatic compounds, phthalic esters, chlorinated benzenes, chlorinated phenols, PCB, chlorinated dioxins and chlorinated furans, bromated flame-retardants, pesticides, organic tin, methyl mercury and heavy metals. The presence of this large number of hazardous compounds in landfill leachates should have a significant impact on future landfill risk assessments and the development of leachate treatment methods. We propose that future research should pay more attention to the metal-organic and organic compounds detected in this study. We also suggest using leachate sediments as a matrix for detecting hydrophobic compounds, and reflecting on the degradation phase when evaluating results from monitoring studies. The extensive compilation of compounds in this paper can be used to select compounds to search for in future studies.  相似文献   

2.
By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence of the active operations (i.e., leachate recirculation, waste flushing and air injection) on the environmental performance, the time horizon of the assessment has been split into two time periods: years 0-15 and 16-100. Results show that if these operations are combined with gas utilization and leachate treatment, they are able to shorten the time frame that emissions lead to environmental impacts of concern.  相似文献   

3.
Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.  相似文献   

4.
A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.  相似文献   

5.
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.  相似文献   

6.
Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat.The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to −0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE).For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007E to 0.013PE and 0.002 to 0.003 PE respectively). The reason for this is that even if the leachate is treated, slight amounts of contaminants are released through emissions of treated wastewater to surface waters.The largest environmental improvement with regard to the direct cost of the landfill was the capping and leachate treatment system. The capping, though very cheap to establish, gave a huge benefit in lowered impacts, the leachate collection system though expensive gave large benefits as well. The other gas measures were found to give further improvements, for a minor increase in cost.  相似文献   

7.
This study characterized the organic matter and heavy metals in the leachate from two typical municipal solid waste (MSW) sanitary landfills in China, the recently established (3-year-old) Liulitun landfill and the mature (11-year-old) Beishenshu landfill, using a size fractionation procedure. The organic matter of all raw and treated leachate samples primarily existed in a truly-dissolved fraction with an apparent molecular weight (AMW) of <1 kDa, and its percentage decreased with an increase in overall AMW. The leachate from the newer landfill had a higher percentage of truly-dissolved organic matter. After anaerobic treatment, this leachate had a similar size fraction of organic matter to that seen for the raw leachate of the mature landfill. Biochemical processes had different removal efficiencies for various types of AMW organic matter, and the concentration of moderate AMW organic matter appeared to increase throughout these processes. Most of the heavy metals existed in a colloidal fraction (AMW >1 kDa and particle size <0.45 μm). The behaviors of different species of heavy metals had large variations. The size fractions of heavy metal species were significantly affected by treatment processes and landfill age, except for Zn. The concentration ratio of heavy metals to organic matter was maximal in the colloidal fraction and showed an inverse change to that seen for organic matter concentration changes caused by biochemical processes. Consequently, the pollution levels of heavy metals were substantially increased by treatment processes, although their concentrations decreased.  相似文献   

8.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

9.
This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.  相似文献   

10.
Endocrine-disrupting chemicals (EDCs) in landfill leachates and the effluent from leachate treatment facilities have been analyzed by many researchers. However, seasonal and yearly variations and the influence of landfill age are still not clear. In this study, leachate was sampled on four occasions each, at different seasons, from two MSW landfills which receive different waste material. Then, the quantities of alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs) in leachate were determined. By sampling leachate from landfill cells of different age, the long-term behavior of EDCs was studied. Furthermore, leachate was also sampled at different points in the process of a leachate treatment system, and then the behavior of EDCs in the facility was studied. The concentrations of APs were as low as in surface waters, and OTs were not detected (detection limit was 0.01 microg/l), while BPA and DEHP, which were the most abundant of the four substances measured as PAEs, were found in all the leachates that were measured. Concentrations of BPA and DEHP were almost constant regardless of season, except for a couple of low concentrations observed for BPA. The varying composition of landfilled waste did not influence BPA and DEHP in leachate. Concentration of BPA in raw leachate tends to decrease as the years go by, but the concentration of DEHP was observed to remain at a constant level. BPA was considerably degraded by aeration for leachates from the two landfills, except when the leachate temperature was low. Aeration, coagulation/sedimentation, and biological treatment could not remove DEHP.  相似文献   

11.
This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O&M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 /t, respectively.  相似文献   

12.
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH3 and H2S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H2S (56.58-579.84 μg/m3) and NH3 (520-4460 μg/m3) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H2S and NH3 concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run.  相似文献   

13.
In this study, landfill leachate treatment technologies alternative to anaerobic treatment were experimentally investigated. The emphasis was placed upon nitrogen removal through the use of struvite precipitation. Treatment technologies studied included struvite precipitation, low pH (acidic) air stripping, and activated sludge. Dilution of landfill leachate was used as a means to obtain appropriate quality for feeding the activated sludge process in some instances. Five main treatment combinations were applied. The first and second schemes were struvite precipitation followed by activated sludge process which was fed on undiluted and diluted (1:5) effluents. The third scheme was dilution, activated sludge and struvite precipitation. The fourth alternative was acidic air stripping, struvite precipitation and activated sludge process. The fifth scheme was acidic air stripping, activated sludge and struvite precipitation. All treatment schemes provided comparable COD and ammonia removals, all being around 90%. The treatment schemes incorporating the acidic air stripping, however, was found to be the most advantageous in terms of both efficiency and volume and aeration requirements of the activated sludge process since over 80% COD could be removed in the stripping step. Of the fourth and fifth alternative schemes, the fourth was the most efficient, providing 95% removal of both COD and ammonia. Initial dilution of the leachate at a 1:5 ratio was the least effective one, yielding 90% or lower removals for COD and ammonia. The first scheme, namely application of struvite precipitation to raw leachate followed by activated sludge with or without dilution, proved to be a practical system, providing over 85% COD and 99% ammonia removals. High organic loading up to 0.8 g COD/g VSS day was found to be applicable within this scheme.  相似文献   

14.
In June 1992, SoilTech ATP Systems, Inc., completed the soil treatment phase of the Waukegan Harbor Superfund Project in Waukegan, Illinois, after approximately five months of operation. SoilTech successfully treated 12,700 tons of sediment contaminated with polychlorinated hiphenyls (PCBs) using a transportable SoilTech anaerobic thermal processor (ATP) system nominally rated at ten tons per hour throughput capacity. The SoilTech ATP technology anaerobically desorbs contaminants such as PCBs from solids and sludges at temperatures over 1,000° F. Principal products of the process are clean, treated solids and an oil condensate containing the hydrocarbon contaminants. At the Waukegan Harbor Superfund site, PCB concentrations in the sediments excavated and dredged from a ditch, lagoon, and harbor slip averaged 10,400 parts per million (ppm) (1.04 percent) and were as high as 23,000 ppm (2.3 percent). Treated soil was backfilled in an on-site containment cell. The removal efficiency of PCBs from the soil averaged 99.98 percent, relative to the project performance specification of 97 percent, and treated soil PCB concentrations were measured below 2 ppm. Approximately 30,000 gallons of PCB oil, desorbed from the feed material, were returned to the owner for subsequent off-site disposal. After modifications to the emissions control equipment, compliance with the 99.9999 percent destruction and removal efficiency (DRE) for PCBs in stack emissions required by the U.S. Environmental Protection Agency was achieved.  相似文献   

15.
In this study, performance of a lab-scale two-step treatment system was evaluated for removal of toxic metal ions from landfill leachate. The technology of polymer inclusion membranes (PIMs) was the first step, while the second step of the treatment system was based on sorption on impregnated resin. The PIMs were synthesized from cellulose triacetate as a support, macrocyclic compound i.e. alkyl derivative of resorcinarene as a ionic carrier and o-nitrophenyl pentyl ether as a plasticizer. The transport experiments through PIM were carried out in a permeation cell, in which the membrane film was tightly clamped between two cell compartments. The sorption tests were carried out using a column filled with a resin impregnated with resorcinarene derivative. The obtained results show the good performance with respect to the removal of heavy metals from landfill leachate with the overall removal efficiency of 99%, 88% and 55% for Pb(II), Cd(II) and Zn(II) ions, respectively. Moreover the contents of metal ions in the leachate sample after treatment system were below permissible limit for wastewater according to the Polish Standards.  相似文献   

16.
An increasing number of landfills are operated to accelerate waste decomposition through liquids addition (e.g., leachate recirculation) as a wet landfill. Landfill design and regulation often depend on utilizing landfill gas production models that require an estimate of a first-order gas generation rate constant, k. Consequently, several studies have estimated k using collected gas volumes from operating wet landfills. Research was conducted to examine an alternative approach in which k is estimated not from collected landfill gas but from solid waste samples collected over time and analyzed for remaining gas yield. To achieve this goal, waste samples were collected from 1990 through 2007 at two full-scale landfills in Florida that practiced liquids addition. Methane yields were measured from waste samples collected over time, including periods before and after leachate recirculation, and the results were applied to a first-order decay model to estimate rate constants for each of the sites. An initial, intensive processing step was conducted to exclude non-biodegradable components from the methane yield testing procedure. The resulting rate constants for the two landfills examined were 0.47 yr(-1) and 0.21 yr(-1). These results expectedly exceeded the United States Environmental Protection Agency's rate constants for dry and conventional landfills (0.02-0.05 yr(-1)), but they are comparable to wet landfill rate constants derived using landfill gas data (0.1-0.3 yr(-1)).  相似文献   

17.
Until only recently fluff has been largely disposed of in controlled landfill sites. However, in Europe environmental regulations, including the EU Landfill Directive 1999/31/EC and ELV (End of Life Vehicle) Directive 2000/53/EC, have dramatically increased the pressure on all stakeholders to develop alternative solutions. As increasingly stringent legislation forces Shredder Residues (SR) to be diverted from landfilling, newly developed technologies will be in a position to compete for the market value of disposing of the waste.However, the fluff waste stream is so variable that it cannot be automatically assumed that processes developed for one type of fluff will prove to be suitable for other fluff streams. This situation has contributed towards convincing stakeholders to withhold investment funds or delay taking decisions as to how best to proceed; as a consequence, very few technologies have been fully developed on a commercial basis. It is of particular interest therefore that commercial alternatives to be used in dealing with this complex waste stream should be identified.The present paper illustrates the findings of a full-scale thermal treatment performed on SR samples obtained from various shredding plants. The outcome of the study provides an important contribution towards assessing the feasibility and reliability of the process, thus constituting a basic prerequisite for process performance evaluation. The full-scale plant, designed for the thermo-valorization of tyres, was purpose-modified to allow for fluff combustion. Three different fluff compositions (car fluff with different percentage of shredding, whites and 100% car fluff) were taken into consideration. Both the raw samples and solid products were thoroughly characterized. Combustion emissions were continuously analyzed during the test period, alternatively operating for tyre and fluff combustion. Classification of combustion residues for landfill disposal was carried out indicating only 2% (ashes) as hazardous waste. Preliminary results, obtained from a unsophisticated thermodynamic analysis of the process, indicated a value of 0.61 for energy efficiency parameter calculated in accordance with the Directive 2008/98/EC.To conclude, the thermal treatment investigated may be deemed an appropriate technique for use in managing fluff. Indeed, values obtained for all organic and inorganic contaminants released into the atmosphere were lower than legal limits prescribed, and a significant energy content was recovered from waste fractions.  相似文献   

18.
The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.  相似文献   

19.
In planning for a new sanitary landfill site, the City of Edmonton, Canada considered the potential for dissemination of micro-organisms via aerosols and by gulls that feed on the refuse. The health impacts on the residents and chicken and mushroom farming activities in the vicinity of the proposed location were assessed. Conclusions based on a review of information in the literature and in the City's planning documents were: (1) the densities of airborne microbes generated at the landfill site would be less than those observed at sewage treatment plants which cause very little health risk; (2) chicken and mushroom farming operations generate very high densities of airborne microbes and the small numbers of microbes that might originate from the landfill site would be insignificant; (3) the proximity of the proposed landfill location to an existing landfill site would not likely change the number of gulls in the area; (4) sound agricultural practices (such as preventing wild birds from contacting poultry, or their water supplies, food and new litter) will minimize risk of the spread of pathogens to chickens from gulls.  相似文献   

20.
In this paper a process for the treatment of landfill leachate involving evaporation and reverse osmosis was proposed. Experimental tests were performed on an industrial landfill leachate. The leachate was subjected to evaporation so as to obtain a distillate containing a small amount of organic material and a substantial amount of inorganic substances (consisting primarily of metals and ammonium salts). The distillate of the evaporation treatment was then subjected to reverse osmosis. The reverie osmosis tests were performed using two different membranes: the AD membrane (thin two-ply film of polyamide) and the SC membrane (thin three-ply film of polyamide). Tests carried out at different values of pH showed a reduction of organic content of about 88% when AD membranes were used and about 80% with SC membranes independently of pH. As regards ammonium, comparable reductions of over 97% were registered for both types of membrane in the optimal conditions of pH = 6.4 (97.1% for AD membranes and 97.7% for SC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号