首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an innovative, two-stage process to remediate uranium-contaminated soils, researchers at Los Alamos National Laboratory's (LANL's) Technical Area 33 (TA-33) successively reduced 218 cubic yards of contaminated soil to approximately 30 gallons of leachate solution and resins. In the first step, the contaminated soil is separated from the clean soil using the Thermo Nuclean (a division of the Thermo NUtech company) Segmented Gate System (SGS). Contaminated soil proceeds via conveyor belt to a separate storage bin to await further processing, while uncontaminated soil is returned to its original location. From the 218 cubic yards of soil excavated from the test site at TA-33, only seven cubic yards were found to contain uranium contamination above the criterion release limit, yielding an initial waste volume reduction of 97 percent. Using the containerized vat leaching (CVL) method, a technique borrowed from the mining industry, the uranium was then removed from the reduced volume of contaminated soil. This article describes the two processes and analyzes potential cost savings based on different disposal and storage options.  相似文献   

2.
Often liability for environmental damage and cleanup of contaminated sites is made difficult, especially with chemically complex environments containing different pollutants, by the inability to differentiate potential sources (or “owners”) of pollutants from each other. As a result, unnecessary costs may be associated with having to assume financial responsibility for alleged contamination of a site. This article reviews the advances in chemical fingerprinting as a tool in identifying and differentiating sources of hydrocarbon pollutants in chemically complex environments. Appropriate hydrocarbon target analytes and required analytical methods for hydrocarbon fingerprinting are discussed, and new interpretative tools are presented that may be applied to contaminated soil, sediment, and groundwater environmental situations. With these analytical and interpretative techniques, an appropriate allocation of chemical contamination and costs at a site can be made.  相似文献   

3.
To stem rising remediation costs for soils contaminated with hazardous metals, increased emphasis is being placed on the development of in-situ and ex-situ treatment technologies. Often, a lack of basic information on the chemical and physical characteristics of the soil and contaminants hampers treatability studies used to design these technologies. This article proposes and demonstrates a characterization program to meet these information needs, employing standard analytical techniques coupled with advanced spectroscopy and microscopy techniques. To support treatments involving physical separation strategies, the program uses standard analytical techniques to characterize the soil and the association of contaminants with different soil fractions (e.g., size and density fractions). Where chemical treatments are required, spectroscopy and microscopy methods are employed to yield quantitative information on the oxidation state and speciation of the contaminant. Examples demonstrate the use of measured soil and contaminant characteristics in the screening of alternative treatment technologies and in the selection of soils for use in treatability studies. Also demonstrated is the use of these characterization tools in the design and optimization of treatment strategies and in support of risk assessment determinations.  相似文献   

4.
5.
A study was conducted in the region of the Lena River, in northeast Russia, where oil‐contaminated soil remediation is compromised due to the reduced natural attenuation mechanisms in northern eco‐systems. The goal of the study was to analyze the effectiveness of different biological methods for remediating the permafrost soil cover contaminated with high concentrations of oil. For the remediation of the areas with approximately similar levels of contamination (in the range of 10 to 14 grams per kilogram [g/kg] of soil) different biological remediation schemes were applied: site 1: sowing plant seeds of meadow clover grass; site 2: introducing a consortium of hydrocarbon oxidizing microorganisms (HOM); and, site 3: introducing the same consortium of HOM with simultaneously sowing grass mixture. The third scheme, applied for the first time, led to the most favorable results, which might be explained by the synergistic effect based on the principle of positive inverse development.  相似文献   

6.
The capping of waste management units and contaminated soils is receiving increasing attention as a low-cost method for hazardous chemical site remediation. Capping is used to prevent further groundwater pollution by existing waste management units and contaminated soils through limiting the moisture that enters the wastes. In principle, for wastes located above the water table, the construction of an impermeable cap can prevent leaching of the wastes (leachate generation) and groundwater pollution. In practice, appropriately designed and constructed RCRA caps can provide for only short-term prevention of groundwater pollution. Alternative approaches are available for capping of wastes that can be effective in preventing moisture from entering the wastes and concomitant groundwater pollution. These approaches recognize the inability of the typical RCRA cap to keep wastes dry for as long as waste constituents will be a threat and, most importantly, provide the necessary funds to effectively address all plausible worst-case scenario failures that could occur at a capped waste management unit or contaminated soil area.  相似文献   

7.
The Office of Radiation and Indoor Air of the U.S. Environmental Protection Agency has demonstrated a soil washing plant for the treatment of radioactively contaminated soils from two Superfund sites in New Jersey. The plant employs unit operations that are widely used in the processing of minerals and coal. These operations were examined and tested to determine how they would apply to volume reduction of these contaminated soils. In this context, they are considered to be innovative candidates for remediation of other sites with large volumes of soil contaminated with low-level radioactivity. Laboratory testing of soil characteristics and behavior in unit processes is used to assess the applicability of volume reduction/chemical extraction (VORCE) technology to specific sites.  相似文献   

8.
表面活性剂在多环芳烃污染土壤修复中的应用   总被引:6,自引:2,他引:4  
王宏光  郑连伟 《化工环保》2006,26(6):471-474
介绍了单一表面活性剂(非离子表面活性剂、生物表面活性剂)、阴-非离子混合表面活性剂对多环芳烃的增溶作用、增溶机理及无机离子对表面活性剂增溶能力的影响,综述了化学表面活性剂和生物表面活性剂在污染土壤生物修复中的应用。由于生物表面活性剂具有许多独特的优点,今后应加强生物表面活性剂的开发与应用研究。  相似文献   

9.
总结了国内外化学修复法和生物修复法修复火炸药生产废水污染土壤的研究进展。比较了各种方法的优缺点,提出了未来火炸药生产废水污染土壤修复技术的研究方向。指出:应将物理修复法、化学修复法及生物修复法相结合,将修复定位于综合化、彻底化及可利用化,以期达到火炸药生产废水污染土壤的无害化治理。  相似文献   

10.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   

11.
The use and performance of soil vapor extraction (SVE) as an in-situ remedial technology has been limited at numerous sites because of both geologic and chemical factors. SVE systems are not well suited to sites containing low permeability soils or sites contaminated with recalcitrant compounds. Six-phase soil heating (SPSH) has been developed by the Battelle Pacific Northwest Laboratories (Battelle) to enhance SVE systems. The technology utilizes resistive soil heating to increase the vapor pressure of subsurface contaminants and to generate an in-situ source of steam. The steam strips contaminants sorbed onto soil surfaces and acts as a carrier gas, providing an enhanced mechanism by which the contaminants can reach an extraction well. Full-scale applications of SPSH have been performed at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina; at a former fire training site in Niagara Falls, New York; and at Fort Richardson near Anchorage, Alaska. At each site, chlorinated solvents were present in low permeability soils and SPSH was applied in conjunction with SVE. The results of the three applications showed that SPSH is a cost-effective technology that can reduce the time required to remediate a site using only conventional SVE.  相似文献   

12.
A method of analyzing soil vapor extraction (SVE) laboratory data using a sample of contaminated soil is presented to allow the calculation of equilibrium constants for an assumed gas/soil equilibrium expression. The constants can be determined for any compound measured in the exit gas. A Freundlich equilibrium expression was shown to represent the equilibrium in a soil contaminated with trichloroethylene (TCE) and several aromatic solvents.  相似文献   

13.
In the present work desorption tests of an artificially contaminated soil by naphatelene sulphonated compounds have been carried out by soil washing realised by water at different pH: Naphtalene-1,5-disulfonic acid (1-5 NDS), 2-naphthol-6,8 disulphonic acid (G-acid) and sodium beta-naphtalene-sulphonate (beta-salt) have been selected as more representative organic compounds present in the ex industrial site of ACNA (Cengio, SV, Italy) in which very serious contamination levels of several pollutants are present both in the soils and surface waters. Equilibrium batch tests have been carried out in order to find the best operative condition in column washing tests. The obtained results can be considered very preliminary but useful to arrange a next experimental work that will be realised on real contaminated soils.  相似文献   

14.
The Army National Guard initiated an Innovative Technology Evaluation (ITE) Program in March 2000 to study potential remedial technologies for the cleanup of explosives‐contaminated soil and groundwater at the Camp Edwards site on the Massachusetts Military Reservation. The soil technologies chosen for the ITE program were: soil washing, chemical oxidation, chemical reduction, thermal desorption/destruction (LTTD), bioslurry, composting, and solid phase bioremediation. The technologies were evaluated based on their ability to treat both washed and untreated soil. A major factor considered was the ability to degrade explosives, such as RDX, found in particulate form in the soils. The heterogeneous nature of explosives in soils dictates that the preferred technology must be able to treat explosives in all forms, including the particulate form. Groundwater remediation technologies considered include: in situ cometabolic reduction, two forms of in situ chemical oxidation, Fenton‐like oxidation and potassium permanganate. This article presents the results of each of the remedial technologies evaluated and discusses which technologies met the established ITE performance goals. © 2003 Wiley Periodicals, Inc.  相似文献   

15.
生物炭修复Cd,Pb污染土壤的研究进展   总被引:8,自引:0,他引:8       下载免费PDF全文
杨璋梅  方战强 《化工环保》2014,34(6):525-531
随着矿产开采、冶炼等工业活动以及污水灌溉、施用污泥和劣质化肥等农业活动的进行,Cd,Pb等有害重金属不断进入农业环境中,对农田、菜地等造成污染。生物炭作为重要的土壤改良剂,在对Cd,Pb污染土壤的修复中表现出巨大的潜力。从生物炭的特性及制备、修复效果及其影响因素、修复机理等方面,对近年来国内外有关生物炭修复Cd,Pb污染土壤的研究成果和现状进行了总结,并对生物炭修复Cd,Pb污染土壤的发展前景和未来研究方向进行了展望。  相似文献   

16.
The U.S. Environmental Protection Agency (EPA) evaluated an in‐situ application of a soil‐amendment process at a residential site that was contaminated with lead. The goal of the evaluation was to determine if the soil‐amendment process resulted in lower concentrations of bioavailable lead in the contaminated soils. The relative bioavailability of lead (bioaccessible lead) was measured by an in vitro test procedure that uses a highly acidic extraction procedure to simulate human digestive processes. The soil‐amendment demonstration showed that the 11.2 percent mean reduction in bioavailable lead concentration between untreated and treated soils was not statistically different. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
This paper describes experiments that demonstrate the effects and potential for remediation of a former steelworks site in Wales polluted with polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Under field conditions, PAH-contaminated soil was composted in-vessel, with or without organic feedstocks, receiving forced aeration for 80 days followed by 4 months maturation. Treatments compared PAH removal in contaminated soil to contaminated soil mixed with three different organic waste mixes after composting and after composts were spread to land. After composting, PAH concentrations declined in all treatments, by up to 38%. Sixteen months after the composts were landspread and vegetation was established, only those containing contaminated soil with organic additions exhibited further PAH removal, by up to 29%. Composting resulted in a decline in the relative concentration of small PAHs, whereas the landspreading-vegetation phase saw a decline in the relative concentration of medium PAHs in two of the three composts exhibiting PAH removal. Under controlled glasshouse conditions, vegetated soil columns of differing depths were exposed to VOCs from beneath. VOC vapour affected both shoot and root growth and soil microbial activity; effects varied with distance from the VOC source. This work demonstrated that on-site remediation of aged PAH-contaminated land can be successfully initiated by in-vessel co-composting followed by land spreading and vegetation, within a practical timeframe.  相似文献   

18.
有机污染土壤原位化学氧化药剂投加方式的综述   总被引:1,自引:0,他引:1       下载免费PDF全文
原位化学氧化技术是修复有机污染土壤最经济有效的技术之一。药剂的投加与分散技术是原位化学氧化修复技术的核心。药剂投加与分散方式的选择与污染场地的土壤渗透性、特征水平、污染深度、氧化剂性质、修复费用等相关。阐述了直压式注射法、注射井法、土壤置换法和高压-旋喷注射法等药剂投加与分散技术的适用性、控制参数及优缺点等,引用工程实例对药剂投加与分散技术在原位化学氧化修复过程中的应用情况进行了论证。  相似文献   

19.
In this work the development of a process for the recovery of copper from contaminated industrial soils is presented. Experimental tests on a standard soil contaminated with a solution of copper chloride were carried out. The metal was extracted from the contaminated soil by flushing with a 0.1 M aqueous solution of an ethylenediaminetetraacetic acid (EDTA) sodium salt. A maximum copper extraction efficiency of about 60% was observed. Copper was then separated from the extracted solution by precipitation with sodium hydroxide after addition of ferric sulfate.  相似文献   

20.
Remediation of heavy metal contamination in soil is a widespread environmental issue. Conventional remediation techniques are invasive and often too expensive, particularly if large areas of soil are contaminated. Phytoremediation is the use of plants to remediate soil and groundwater. Phytoremediation of inorganic comtaminants such as metals can be further catagorized into phytostabilization and phytoextraction. These techniques have gained an increasing amount of attention and research over the last ten years. Phytoextraction of heavy metals and periodical removal of harvestable plant parts results in a gradual decrease of pollutant levels in the top soil. Woody species such as Salix sp. (willow) do not represent the fastest phytoextraction procedure compared to uptake by herbaceous species; however, they offer the added advantage of possible reuse of the produced biomass (wood) for the production of renewable energy. Here we present the results of a field experiment conducted to evaluate the use of Salix to remediate soil contaminated with cadmium and zinc at a dredged sediment disposal site in Flanders, Belgium. © 2003 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号