首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
从污水处理厂活性污泥中分离筛选出一株高效苯酚降解菌L5-1,经菌落形态观察和16S rDNA基因测序,结果表明菌株L5-1为蜡样芽胞杆菌(Bacillus cereus),美国国家生物信息中心(NCBI)的注册号为MN784421.将苯酚设置为唯一碳源,对其生长和苯酚降解特性展开研究.结果表明:菌株L5-1在10%接种量、温度30~35℃、pH值7~8的条件下,均能高效降解培养基中苯酚(培养基体积为100mL,初始苯酚浓度为500mg/L,14h时降解率>93%).而在最优降解条件下(10%接种量,培养温度为35℃,pH值7.0,NaCl浓度为1%),初始苯酚浓度为500mg/L,菌株在14h内的苯酚降解率可达97.1%;而当初始苯酚浓度为1000mg/L,菌株也可在46h内达到97.71%的降解率.运用Haldance方程动力学模拟菌株在不同浓度苯酚下的生长过程,其最大比生长速率为0.355h-1,半饱合常数104.27mg/L,抑制常数为322.83mg/L,R2=0.997.菌株L5-1为目前已报道的Bacillus菌属中降解苯酚能力较强的菌株,为实际处理含酚废水中提供理论参考.  相似文献   

2.
耐低温菌JH-9降解苯胺的动力学研究   总被引:1,自引:0,他引:1  
研究耐低温菌JH-9在低温(10 ℃)条件下对不同初始ρ(苯胺)的生物降解情况,并采用反应动力学方程(Monod方程和Haldane方程)拟合其降解过程. 结果表明,菌株JH-9在低温下可降解苯胺,当菌体初始质量浓度一定时,苯胺降解率及平均降解速率主要与初始ρ(苯胺)有关. 初始ρ(苯胺)较低时(<550 mg/L),其在120 h内可完全降解,且平均降解速率随着初始ρ(苯胺)的增加而升高,菌体降解过程中没有出现苯胺毒性抑制作用,遵循Monod方程;当初始ρ(苯胺)较高时(>550 mg/L),苯胺降解率及降解速率均有所下降,由于初始ρ(苯胺)过高对菌体产生了抑制作用,其降解过程以基质抑制型的Haldane方程为主.   相似文献   

3.
皮氏罗尔斯通氏菌DX-T3-01苯酚降解特性及动力学   总被引:1,自引:0,他引:1  
筛选自德兴铜矿对重金属Cd2+有较强抗性的皮氏罗尔斯通菌DX-T3-01菌株,经驯化发现其对苯酚也有较强的降解能力。通过正交实验确定了该菌株苯酚降解最佳条件为:30℃、pH 7.0、转速150 r/min、接种量1%(V/V),并探讨了外加碳源和重金属对苯酚降解的影响。在最佳苯酚降解条件下,初始苯酚浓度为500 mg/L的苯酚经56 h后可降解至检测限,最高可降解苯酚浓度为800 mg/L。当初始苯酚浓度300~600 mg/L时,菌株降解苯酚的动力学过程符合Monod零级反应模型。  相似文献   

4.
苯酚降解菌的分离及降解特性研究   总被引:3,自引:0,他引:3  
从扬子乙烯集团废水处理系统曝气池中的活性污泥驯化分离得到一株能快速降解苯酚的菌株,初步鉴定其为假单胞菌属菌株。该菌株在5℃-35℃范围内时都可以有效降解并矿化200mg/L的苯酚,最适宜的生长温度为25℃左右;菌株在pH为5~9范围内可以降解200mg/L的苯酚,偏碱性的条件下比酸性条件更适合细菌生长;培养过程中振荡速率大于120r/m时降解速率最大。当苯酚的初始浓度超过1000mg/L时,降解菌的生长受到抑制,不能有效降解苯酚。  相似文献   

5.
为了研究氯酚类环境激素2,4,6-三氯苯酚的生物降解性,从活性污泥中分离筛选出一株能以2,4,6-三氯苯酚为唯一碳源生长的降解性菌株T10,通过16S rRNA测序鉴定其为一种芽孢杆菌(Bacillus sp.)。在实验室条件下探讨pH值、温度等环境因素对菌株T10降解性的影响,实验结果表明该菌株在pH为7.0,3040℃范围内具有高降解活性,底物浓度为25 mg/L时,120 h的降解率均能达到90%以上,在30℃条件下的降解半衰期为1.26 d。初始底物浓度达到30 mg/L时,2,4,6-TCP的抑制作用开始起主导作用,影响菌株降解活性。  相似文献   

6.
苯酚存在对生物强化系统降解2,4-二氯酚的影响   总被引:5,自引:1,他引:4  
研究了采用生物强化技术降解废水中2,4-二氯酚(简称2,4-DCP)时,不同浓度的苯酚存在对生物强化系统降解2,4-DCP的影响,并通过半连续流实验研究了苯酚长期存在下强化系统中2,4-DCP和苯酚生物降解速率的变化趋势.结果表明,苯酚浓度为10mg/L,50mg/L,100 mg/L及300mg/L时,都会对强化系统中2,4-DCP的降解速率产生一定的抑制作用,而且抑制作用随着苯酚浓度的增加而增强.不同浓度的苯酚与2,4-DCP长期共存时,2,4-DCP的降解速率表现出下降的趋势,而苯酚的降解速率则有所增强.  相似文献   

7.
从本溪市某焦化厂的活性污泥中分离驯化得到一株高效苯酚降解菌C1,初步鉴定为假单胞菌。该菌能在以苯酚为唯一碳源的无机盐培养基中生长,且最高可耐受2 000 mg/L的苯酚。对该菌降解性能研究表明,该菌具有较强的苯酚降解能力,在苯酚浓度为400 mg/L、30℃、pH值7.0、摇床转速120 r/min、接种量5%的条件下,培养24 h后苯酚降解率可达99%以上。葡萄糖对该菌体的生长及苯酚降解能力均有一定的影响;低浓度(0.5 g/L)葡萄糖可以提高该菌对苯酚的降解速率。  相似文献   

8.
微生物降解苯酚废水的特性研究   总被引:9,自引:0,他引:9  
通过对驯化微生物处理苯酚模拟废水的研究,考察了苯酚初始浓度、菌种投加量、葡萄糖添加量、废水pH值、反应温度等因素对苯酚降解效果的影响.结果表明,当苯酚浓度大于500mg/L时开始表现出对微生物的抑制作用,浓度高于700mg/L以后微生物降解效果不理想;当苯酚浓度为500mg/L时,微生物接种量大于400mg/L可获得最大降解速率;适量添加葡萄糖可促进微生物对苯酚的降解,但浓度超过0.2g/L以后由于底物竞争会对苯酚的降解形成抑制;生物降解苯酚的适宜pH值和温度范围分别为5.5~6.5和30~35℃.  相似文献   

9.
高效复合菌群JHD降解苯酚的特性及其动力学研究   总被引:7,自引:1,他引:6  
为了获得能降解苯酚的高效微生物菌群,研究了不同条件(温度、pH、接种量、振荡速率及初始苯酚浓度等)对复合菌群JHD降酚性能的影响.结果表明,32℃、pH=7.0、接种量为10%和振荡速率为150 r·min-1,初始苯酚浓度为1000 mg·L-1时降解苯酚16 h,降酚率高达99.97%,残余苯酚浓度低于0.28 mg-L-1,远低于国家一级排放标准.采用Andrews方程对复合菌群JHD降解苯酚的过程进行拟合,其动力学参数为qmax=0.41 h-1,K=55.44 mg·L-1,Ki=970.06 mg·L-1,复合菌群JHD降解苯酚的最佳初始苯酚浓度为231.90 mg·L-1,实验数据与该动力学方程拟合较好.  相似文献   

10.
菌株Ochrobactrum sp. CH10是从北京元大都城垣遗址处的人工湿地筛选到的高效苯酚降解菌.以苯酚为唯一碳源和能源对其进行了生长和苯酚降解特性的研究.该菌生长和降解苯酚的适宜条件为30℃、初始pH 7.0、接种量为5%.在该条件下,初始苯酚浓度为400 mg·L-1,24 h时苯酚完全被降解;初始苯酚浓度为900 mg·L-1时,44 h的降解率为92.3%;初始苯酚浓度为1 000 mg·L-1,48 h时的降解率为82.2%.对该菌株苯酚降解动力学过程进行模拟,符合基质抑制型的Haldane模型,各参数分别为:υmax(最大比降解速率)0.126 h-1,KS(半饱和常数)23.53 mg·L-1,KI(抑制常数)806.1 mg·L-1.该菌在苯酚中的生长动力学符合Andrews模型,表现出与苯酚降解相似的趋势.该菌为目前所发现的Ochrobactrum菌属中苯酚降解能力最强的菌株.该菌株在高效处理含酚废水方面具有广阔的应用前景.  相似文献   

11.
单歧藻降解4-乙基酚的动力学研究   总被引:7,自引:3,他引:4       下载免费PDF全文
以4-乙基酚为研究对象,分4个系列浓度组研究其在单歧藻作用下的可降解性及其影响因素,并采用最近提出的生物降解二级反应动力学方程拟合其降解过程.实验结果表明,单歧藻可降解4-乙基酚,其降解速率与藻细胞浓度和有机物初始浓度有关.在较低的有机污染物浓度范围内,动力学常数K主要由藻细胞活性即藻生长速率r决定.   相似文献   

12.
苯酚是造纸、塑料、农药、医药合成等行业生产的原料或中间体。随着经济的发展,未经处理的含酚废水对人类的生存环境已经造成了严重的威胁。利用微生物降解的方法处理含酚废水是一种经济有效且无二次污染的方法。论文通过从被苯酚废水污染的污泥和污水中进行筛选细菌,得到11株耐受菌和降酚菌,在以苯酚为单碳源的培养上筛选降酚菌,通过药物培养得到7株高效降解酚菌。选择8号菌为研究菌种,进一步测定苯酚降解的影响因素。考察了温度、pH值、苯酚初始浓度、接种量对苯酚降解的影响。得出该菌的最适温度为30℃,最适降酚pH为8.0~9.0,最适初始苯酚浓度为200—240mg/L,最适接菌量为10%~15%。通过对8号菌降解苯酚的应用价值进行研究,得出8号菌的苯酚降解率可达到90.01%,耐酚浓度可达1.6g/L。  相似文献   

13.
为提高辛基酚聚氧乙烯醚(OPnEO)的生物降解效果,在本实验室已筛选出的H1、TXBc10、OPQb11、TXBa23四株OPnEO高效降解菌的基础上,首次从构建OPnEO混合菌的角度,着重探究了四菌株等比例不同组合降解OPnEO的效果.结果表明,混合菌L9(H1:TXBc10:TXBa23为1:1:1)培养7d后对初始浓度500mg/LOPnEO的降解率最高,达到56.44%,比各单一菌株降解效果有较明显提高.运用单因素试验考察了影响L9的相关因素,初步确定L9降解OPnEO的最适外加碳源和氮源分别为葡萄糖和胰蛋白胨,最适初始pH值为7.0,最适温度为28℃,最适接种量为4%.Plackett-Burman试验筛选获得影响OPnEO降解率的3个显著因子为L9接种量、温度及初始pH值.最陡爬坡试验逼近3个显著因子的最大响应区域,采用Box-Behnken试验设计及响应面法分析,确定L9的最优降解条件为50mL反应体系中接种量4.16%、温度28.20℃、初始pH值7.13、葡萄糖与胰蛋白胨浓度均为2%、OPnEO初始浓度500mg/L、180r/min培养7d,该条件下混合菌L9对OPnEO降解率达62.15%,比未优化条件提高了5%左右.  相似文献   

14.
研究了超声波/零价铁协同降解苯酚的过程,并对其降解机理进行了研究,分别考察了零价铁投加量,溶液初始浓度,初始pH值,超声功率等因素对苯酚降解的影响规律。结果表明,超声波/零价铁工艺能有效的降解水中的苯酚,零价铁的最佳投加量为0.8 g/L,苯酚浓度越低处理效果越好,苯酚在酸性条件的降解率高于碱性条件,在0~400 W超声作用下,功率越大,降解率越大;超声波与零价铁粉对苯酚的降解具有协同作用,其降解过程符合一级动力学规律。在体系中加入自由基捕获剂正丁醇抑制了苯酚的降解,说明苯酚的降解过程主要依靠羟基自由基(.OH)的氧化作用。  相似文献   

15.
喹啉降解菌Rhodococcus sp.QL2的分离鉴定及降解特性   总被引:3,自引:2,他引:1  
从某焦化厂生物处理系统的活性污泥中驯化、分离出1株能以喹啉为唯一碳、氮、能源生长代谢的菌株QL2.经过对其形态特征、生理生化特征和16S rRNA序列分析鉴定该菌株为红球菌属 (Rhodococcus sp.).研究表明,菌株QL2利用喹啉生长的适宜温度为35~42℃,培养基初始pH为8~9,摇床转速为150 r/min.外加氮源能促进菌株的生长,其中无机氮比有机氮、铵态氮比硝态氮更利于细菌的生长.在喹啉初始浓度为60~680 mg/L范围内菌株QL2降解喹啉符合零级动力学方程.喹啉初始浓度为150 mg/L时在8 h内完全降解,TOC去除率14 h内可达到70%.降解过程中产生有颜色的物质,且杂环上的氮原子以氨氮的形式被释放.通过HPLC及GC/MS分析出喹啉降解过程中的主要中间产物为2-羟基喹啉.该菌底物利用范围广,能降解苯酚、萘、吡啶等多种芳香族化合物.  相似文献   

16.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0–500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

17.
The phenol and m-cresol biodegradations were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that C. tropicalis exhibited the increased capacity of phenolic compounds degradation after laser irradiation. It could degrade 2600 mg/L phenol and 300 mg/L m-cresol by 5% inoculum concentration, respectively. In the dual-substrate biodegradation system, 0-500 mg/L phenol could accelerate m-cresol biodegradation, and 300 mg/L m-cresol could be completely utilized within 46 hr at the presence of 350 mg/L phenol. Besides, the maximum biodegradation of m-cresol could reach 350 mg/L with 80 mg/L phenol within 61 hr. Obviously, phenol, as a growth substrate, could promote CTM 2 to degrade m-cresol, and was always preferentially utilized as carbon source. Comparatively, low-concentration m-cresol could result in a great inhibition on phenol degradation. In addition, the kinetic behaviors of cell growth and substrate biodegradation were described by kinetic model proposed in our laboratory.  相似文献   

18.
一株氯苯优势降解菌的降解条件优化   总被引:1,自引:1,他引:0       下载免费PDF全文
以氯苯降解率为降解效果指标,以降解温度、初始pH、降解时间、接种量和氯苯初始浓度为影响因素,对实验室保藏的一株氯苯优势降解菌株Lysinibacillus fusiformis LW13降解氯苯的降解条件进行优化。单因素试验结果表明,该降解菌株对氯苯的适宜降解条件分别为:温度20~40℃,pH为8.0,降解时间4 d,接种量2%~4%,氯苯初始浓度60~140 mg/L。以降解温度、氯苯初始浓度和接种量这三个显著影响因素进行正交试验,结果表明各影响因素的主次顺序为降解温度>氯苯初始浓度>接种量,最佳降解条件为降解温度35℃、氯苯初始浓度100 mg/L和接种量4%,最佳降解条件下氯苯降解率可高达93.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号