首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambient speciated mercury concentrations including total gaseous mercury (TGM), gaseous divalent mercury (Hg(II)), and particulate mercury (Hg(p)) were measured on the roof of the Graduate School of Public Health building in Seoul, Korea from February 2005 to February 2006. The average concentrations were 3.22 ± 2.10 ng m?3, 27.2 ± 19.3 pg m?3, and 23.9 ± 19.6 pg m?3 for TGM, Hg(II), and Hg(p), respectively. Hg(II) and Hg(p) concentrations were higher during the daytime than during the nighttime, probably because of high photochemical activity. Hg0 concentrations were not significantly correlated with ozone however a positive correlation between ozone and Hg(II) was found during periods of high humidity. Eighteen days were characterized as pollution events with 24 h average PM2.5 concentrations >65 μg m?3. The average concentrations of TGM and Hg(p) during these events were 1.4–2 times higher than those during non-pollution events. In order to identify the contribution of long-range transported mercury to the enhanced mercury concentrations in Korea, an episode was defined as a period with hourly average TGM and CO concentrations higher than the monthly average TGM and CO concentrations and with significant enhancement of both TGM and CO concentrations for at least 10 h. A total of 70 episodes were identified during the sampling period: 36 local episodes and 34 long-range transport episodes. The mean ΔTGM/ΔCO slope for all episodes was 0.0063 ng m?3 ppbv?1 which agreed well with the slope (0.0036–0.0074 ng m?3 ppbv?1) found in previous studies that identified long-range transport of TGM from China. The mean slope during non-events was 0.0011 ng m?3 ppbv?1. Back-trajectory analysis showed that during episodes, air parcels arrived mostly from the major industrial areas in China (n = 25, 73%), followed by Japan (n = 4, 12%), Yellow Sea (n = 3, 9%), and Russia (n = 2, 6%).  相似文献   

2.
Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by CTECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.  相似文献   

3.
The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01).  相似文献   

4.
The quality of rural life can be affected by offensive odors released from animal buildings and storage units. The objectives of this study were to compare the concentrations of odor and odorants above different types of stirred swine slurry to analyze the relationships between concentrations of odor (and odorants) and physicochemical characteristics of the slurry (i.e. pH, temperature, dry matter, volatile solids, and concentration of 22 chemical compounds); and to propose predictive models for the odor concentration (OC) based on these physicochemical characteristics (solely and in combination with concentrations of specific odorants in the air above the slurries). The study comprised data on concentrations of odor and odorants in the air above slurry samples (fresh and/or stored) collected from production units with farrowing sows, finishing swines, or weaning pigs at eight swine operations (N = 48). OC measured in the air above stirred swine slurry samples were not significantly different among production types or storage times. The physicochemical characteristics of the slurries were not useful for predicting OC or concentrations of hydrogen sulfide (or organic sulfides) above the slurry, but were related to concentrations of other emitted gases such as phenols and indoles (r2 = 0.65–0.79, p <0.05), ammonia (r2 = 0.86, p < 0.05) and carboxylic acids (r2 = 0.23–0.59, p <0.05). There was good precision of predictive models of OC based on selected slurry characteristics (i.e. pH, dry matter, nitrogen content, sulfur content or concentrations of individual aromatic compounds and carboxylic acids) together with concentrations of specific odorants in the air (e.g. hydrogen sulfide) (r2 between 0.70 and 0.92). This study suggests that predictive models could be useful for evaluating odor nuisance potentials of swine slurry during handling.  相似文献   

5.
Improving methods for assessing the spatial and temporal resolution of organic compound concentrations in marine environments is important to the sustainable management of our coastal systems. Here we evaluate the use of ethylene vinyl acetate (EVA) as a candidate polymer for thin-film passive sampling in waters of marine environments. Log KEVA−W partition coefficients correlate well (r2 = 0.87) with Log KOW values for selected pesticides and polychlorinated biphenyls (PCBs) where Log KEVA−W = 1.04 Log KOW + 0.22. EVA is a suitable polymer for passive sampling due to both its high affinity for organic compounds and its ease of coating at sub-micron film thicknesses on various substrates. Twelve-day field deployments were effective in detecting target compounds with good precision making EVA a potential multi-media fugacity meter.  相似文献   

6.
Airborne particle and gas samples were collected approx every 12 days from April 2002 to June 2006 at the Sterling Nature Center located near the southeast corner of Lake Ontario. These samples were analyzed for polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDE). Clausius-Clapeyron (C–C) regression analyses of PCBs and DDE yielded moderate correlations (r2 = 0.54, p < 0.001; r2 = 0.74, p < 0.001, respectively) indicating that much of the variations in concentrations can be explained by temperature. Back trajectory analysis indicated that the most important factors driving unusually high PCB partial pressures relative to those predicted by the C–C regression were slow wind speeds and winds generally from the southwest. This combination, which occurred frequently in 2004, increased contact of the air with contaminated upwind surfaces with minimum dilution. Hybrid receptor modeling (Potential Source Contribution Function (PSCF)) results for the total PCBs identified the midwestern US region that contains the urban areas of southern Indiana (IN), southwestern Ohio (OH), and northern Kentucky (KY) having the highest PSCF values. In general urban areas like Chicago (IL), Detroit (MI), Cleveland (OH), St. Louis (MO), and Nashville (TN) also had significant possibilities. In contrast, the PSCF modeling for DDE identified northern Alabama as the area with the highest probability where DDT was applied to cotton fields.  相似文献   

7.
Semi-continuous measurements of ambient mercury (Hg) species were performed in Detroit, MI, USA for the calendar year 2003. The mean (±standard deviation) concentrations for gaseous elemental mercury (GEM), particulate mercury (HgP), and reactive gaseous mercury (RGM) were 2.2±1.3 ng m−3, 20.8±30.0, and 17.7±28.9 pg m−3, respectively. A clear seasonality in Hg speciation was observed with GEM and RGM concentrations significantly (p<0.001) greater in warm seasons, while HgP concentrations were greater in cold seasons. The three measured Hg species also exhibited clear diurnal trends which were particularly evident during the summer months. Higher RGM concentrations were observed during the day than at night. Hourly HgP and GEM concentrations exhibited a similar diurnal pattern with both being inversely correlated with RGM. Multivariate analysis coupled with conditional probability function analysis revealed the conditions associated with high Hg concentration episodes, and identified the inter-correlations between speciated Hg concentrations, three common urban air pollutants (sulfur dioxide, ozone, and nitric oxides), and meteorological parameters. This analysis suggests that both local and regional sources were major factors contributing to the observed temporal variations in Hg speciation. Boundary layer dynamics and the seasonal meteorological conditions, including temperature and moisture content, were also important factors affecting Hg variability.  相似文献   

8.
Residential concentrations of formaldehyde have been associated with poor respiratory health in children, where formaldehyde has been measured using stationary monitors inside homes. Although children spend most of their time indoors at home, there are few studies of children’s personal exposure to formaldehyde. The aim of this study was to investigate the relationship between personal exposure formaldehyde concentrations, microenvironmental concentrations and time weighted exposure estimates in children.Forty-one primary school children (aged between 9 and 12 years) wore a personal passive sampler over two 24 h periods in two seasons and completed 24 h daily activity diaries and a questionnaire about lifestyle and behaviour. Samplers were co located indoors at home, outdoors at centralised locations and indoors at school for the corresponding period.Personal exposure formaldehyde concentrations in this group of children were generally low with a geometric mean concentration of 9.1 ppb (range <detection limit to 27.3 ppb). There were strong correlations between personal exposure concentrations and both domestic indoor (rs = .779, p < 0.001) and time weighted estimated (rs = .802, p < 0.001) concentrations. The time weighted model did not improve the estimate of personal exposure compared with stationary indoor concentrations. Indoor air concentration measured with a single stationary monitor was a suitable surrogate for personal exposure.  相似文献   

9.
The MiniVOL sampler is a popular choice for use in air quality assessments because it is portable and inexpensive relative to fixed site monitors. However, little data exist on the performance characteristics of the sampler. The reliability, precision, and comparability of the portable MiniVOL PM10 and PM2.5 sampler under typical ambient conditions are described in this paper. Results indicate that the MiniVOL (a) operated reliably and (b) yielded statistically similar concentration measurements when co-located with another MiniVOL (r2=0.96 for PM10 measurements and r2=0.95 for PM2.5 measurements). Thus, the characterization of spatial distributions of PM10 and PM2.5 mass concentrations with the MiniVOL can be accomplished with a high level of confidence. The MiniVOL also produced statistically comparable results when co-located with a Dichotomous Sampler (r2=0.83 for PM10 measurements and r2=0.85 for PM2.5 measurements) and a continuous mass sampling system (r2=0.90 for PM10 measurements). Environmental factors such as ambient concentration, wind speed, temperature, and humidity may influence the relative measurement comparability between these sampling systems.  相似文献   

10.
To characterize the atmospheric dynamics and behavior of organic compounds in the NY–NJ Harbor Estuary, atmospheric concentrations of polychlorinated biphenyls (PCBs) were measured at coastal, suburban and urban sites in New Jersey in 1997–1999. ∑PCB concentrations at the suburban site varied from 86 to 2300 pg m−3 and from 84 to 1100 pg m−3 at the coastal site. Although the temporal trends of total concentrations were significantly different at the three sites (p<0.01), PCB congener profiles revealed similar patterns (r2>0.90, p<0.001) implicating a dominant emission type and/or process. Temperature explained >50% of the total variability in ln[PCB] at both sites. Atmospheric concentrations at the suburban site increased when winds blew from an eastnortheast vector, while increased wind speeds led to a slight dilution. Wind speed and direction were not significantly correlated with the concentrations measured at the coastal site. Temporal changes in congener distribution at the suburban site are consistent with the preferential atmospheric removal of 3–5 Cl-biphenyls by hydroxyl radical attack with estimated half-lives of 0.7–1.8 years.  相似文献   

11.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

12.
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone-hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone.  相似文献   

13.
We measured the concentrations and depth distribution (0-10, 10-20 cm) of 31 PAHs and 12 OPAHs in soils at eleven equidistant sampling points along a 20-km transect in the Angren industrial region (coal mine, power plant, rubber factory, gold mine), Uzbekistan to gain an insight into their concentrations, sources, and fate. Concentrations of all compounds were mostly much higher in the 0-10 cm than in the 10-20 cm layer except in disturbed soil close to the coal mine. Proximity to one of the industrial emitters was the main determinant of PAH and OPAH concentrations. The ∑31PAHs concentrations correlated positively with the ∑7 carbonyl-OPAH (r = 0.98, p < 0.01), ∑5 hydroxyl-OPAH (r = 0.72, p < 0.05), and with industrially emitted trace metals in the topsoil, identifying industrial emissions as their common source. Concentrations of several OPAHs were higher than their parent PAHs, but their vertical distribution in soil suggested only little higher mobility of OPAHs than their corresponding parent PAHs.  相似文献   

14.
Background, aim, and scope  At tropical latitudes, and especially on the semi-arid coasts of the Brazilian Northeast, the rainfall regime governs the water quality of estuaries due to the pronounced difference between the rainy and dry seasons. These changes may be responsible for seasonal changes in bioavailability of mercury (Hg) and other pollutants to the estuarine and coastal biota. Mercury bioaccumulates along estuarine–marine food chains usually result in higher concentrations in tissues of top predators and posing a risk to both marine mammals and humans alike. The Goiana River Estuary (7.5° S) is a typical estuary of the semi-arid tropical regions and supports traditional communities with fisheries (mollusks, fish, and crustacean). It is also responsible for an important part of the biological production of the adjacent coastal waters. Materials and methods   Trichiurus lepturus (Actinopterygii: Perciformes) is a pscivorous marine straggler. Fish from this species (n = 104) were captured in a trapping barrier used by the local traditional population and using an otter trawl net along the main channel of the low estuary during two dry seasons (D1 = November, December 2005, January 2006; D2 = November, December 2006, January 2007) and the end of a rainy season (R = August, September, October 2006). Fish muscle samples were preserved cold and then freeze-dried prior to analysis of its total mercury (Hg-T) contents. Total mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. Results  The studied individuals (n = 104) were sub-adult (30–70 cm, 71 ind.) and adult fish (>70 cm, 33 ind.). Weight (W) (204.1 ± 97.9 g, total biomass = 21,229.7 g) and total length (TL) (63.1 ± 10.1 cm, range 29.5–89.0 cm) presented a significant (p < 0.05) correlation. Two-way ANOVA (n = 81) showed that TL and W had significant differences (p < 0.05) among seasons, being higher in D1 than in D2 and R, respectively. Moreover, season vs. month interaction were detected for the variables length and weight. For the variable weight was detected significant difference for the factor month (p < 0.05). It suggests that the fish enter the estuary at the end of the rainy season and increase in length and weight during the time they spend in the estuary. Fish from this estuary are shown to be fit for human consumption (125.3 ± 61.9 μgHg-T kg–1 w.wt.; n = 104). Fish mercury contents increased with size and weight. Correlations between TL and Hg-T (r = 0.37286) and between W and Hg-T (r = 0.38212) were significant (p < 0.05). Dryer months showed higher mercury concentrations in fish (D1 773.4 ± 207.5 μgHg-T kg–1 d.wt., n = 27; D2 370.1 ± 78.8 μgHg-T kg–1 d.wt., n = 27; R 331.2 ± 138.5 μgHg-T kg–1 d.wt., n = 27). The variable mercury concentration showed differences in relation to the factor season (p < 0.05), where fish captured during the first dry season showed the highest concentration of mercury. The correlation between Hg-T and rainfall (Rf) showed a negative correlation (r = –0.56; p < 0.05). Discussion  The main likely source of mercury to this estuary is diffuse continental run off, including urban and industrial effluents. Since concentration of mercury in fish tissue is negatively correlated to rainfall, but positively correlated with fish length and weight, it suggests that fish growth in this estuary results in mercury uptake and concentration on the fish tissue. In the dry season of 2005–2006, when rainfall remained below the historic average, fish bioaccumulated significantly more mercury than in the dry season 2006–2007, when rainfall was within the predictable historic average. It is suggested that less rainfall, and consequently less particulate matter and less primary production in the estuary, make mercury more available to the higher levels of the estuarine food chain. In the case of higher rainfall, when river flow increases and water quality in the estuary is reduced, mercury probably is quickly exported associated to the particulate matter to the adjacent coastal waters where it then disperses. This species is a potential routine bioindicator for mercury contamination of the biota, but so far was used only with a limited number of individuals and contexts. Conclusions  Fish from the Goiana River estuary can still be safely consumed by the local population. However, any further contamination of this resource might lead to total mercury levels above the recommended limits for pregnant women and small children. The proposed heavy dependency of total mercury levels in fish on water quality indicates that land use and water quality standards must be more closely watched in order to guarantee that best possible practices are in place to prevent bioaccumulation of mercury and its transfer along the food chain. Human interventions and climatic events which affect river water flow are also playing a role in the mercury cycle at tropical semi-arid estuaries. Recommendations and perspectives   T. lepturus is largely consumed by coastal populations of tropical and sub-tropical countries all over the world. It is also consumed by a number of marine mammals over which we have a strong conservation interest. This species is also a link among different ecosystems along the estuarine ecocline. Therefore, knowledge of its degree of contamination might contribute to public health issues as well as marine conservation actions. Studies on mercury and other contaminants using this species as bioindicator (cosmopolitan, readily available) could help elucidating mechanisms through which pollutants are being transferred not only through the food chain, but also from estuarine–coastal–open waters. In addition, using the same species in marine pollution studies, especially as part of a mosaic of species, allows for wide range comparisons of marine food chain contamination.  相似文献   

15.
Measurements of gaseous elemental mercury (GEM), particulate mercury (Hgp), and reactive gaseous mercury (RGM) were concurrently recorded at an urban site in Detroit and a rural site in Dexter, both in Michigan for the calendar year 2004. Their average concentrations (±standard deviation) for the urban area were 2.5 ± 1.4 ng m?3, 18.1 ± 61.0 pg m?3, and 15.5 ± 54.9 pg m?3, respectively, while their rural counterparts were 1.6 ± 0.6 ng m?3, 6.1 ± 5.5 pg m?3, and 3.8 ± 6.6 pg m?3, respectively. The medians of urban-to-rural ratios of Hg concentrations indicate approximately 1-fold, 2-fold, and 3-fold gradients between Detroit and Dexter for GEM, Hgp, and RGM, respectively. The urban–rural differences in Hg also varied considerably on different temporal scales and with wind flow patterns, which was most evident in RGM. Our results show that while Hg at both sites was impacted by regional sources, meteorological conditions, and photochemical transformations, the extent of variations in the observed urban-to-rural gradients, particularly in RGM, cannot be fully accounted for by these processes. Both analyses of the annual data and case studies indicate that the more variable and episodic nature of Hg, particularly RGM, seen in Detroit compared with Dexter, was the result of direct impact from local anthropogenic sources.  相似文献   

16.
Relaxed eddy accumulation (REA) measurements of the total gaseous mercury (TGM) flux measurements were taken over a deciduous forest predominantly composed of Red Maple (Acer rubrum L.) during the growing season of 2004 and the second half of the growing season of 2005. The magnitudes of the flux estimates were in the range of published results from other micrometeorological mercury fluxes taken above a tall canopy and larger than estimates from flux chambers. The magnitude and direction of the flux were not static during the growing season. There was a significant trend (p < 0.001), from net deposition of TGM in early summer to net evasion in the late summer and early fall before complete senescence. A growing season atmosphere-canopy total mercury (TGM) compensation point during unstable daytime conditions was estimated at background ambient concentrations (1.41 ng m?3). The trend in the seasonal net TGM flux indicates that long term dry deposition monitoring is needed to accurately estimate mercury loading over a forest ecosystem.  相似文献   

17.
《Chemosphere》2013,92(7):803-810
The present study investigated polychlorinated biphenyls (PCBs) and hydroxylated metabolites of PCBs (OH-PCBs) in blood from three porpoise species: finless porpoises (Neophocaena phocaenoides), harbor porpoises (Phocoena phocoena), and Dall’s porpoises (Phocoenoides dalli). The porpoises were found stranded or were bycaught along the Japanese coast. Concentrations of OH-PCB were the highest in Dall’s porpoises (58 pg g−1 wet wt), second highest in finless porpoises (20 pg g−1 wet wt), and lowest in harbor porpoises (8.3 pg g−1 wet wt). The concentrations in Dall’s porpoises were significantly higher than the concentrations in finless porpoises and harbor porpoises (p < 0.05 and p < 0.01, respectively). There was a positive correlation between PCB and OH-PCB concentrations (r = 0.67, p < 0.001), suggesting the possible concentration-dependent induction of CYP enzymes. The three porpoise species may have exceptionally low metabolic capacities compared with other marine and terrestrial mammals, because low OH-PCB/PCB concentration ratios were found, which were 0.0016 for Dall’s porpoises, 0.0013 for harbor porpoises, and 0.00058 for finless porpoises. Distinct differences in the OH-PCB congener patterns were observed for the three species, even though they are taxonomically closely related.  相似文献   

18.
We measured mercury speciation in coastal rainwater samples from Monterey Bay, California in 2007–2008 to investigate the source of monomethylmercury (MMHg) in rainwater and determine the relative importance of wet atmospheric deposition of MMHg to coastal waters compared to other sources on the central Pacific coast. Total mercury (HgT) ranged from 10 to 88 pM, with a sample mean ± standard deviation of 33 ± 22 pM (volume-weighted average 29 pM). MMHg concentrations ranged from 0.12 to 2.3 pM with a sample mean of 0.7 ± 0.5 pM (volume-weighted average 0.68 pM). Reactive mercury (HgR) concentrations ranged from 0.87 to 47 pM, sample mean 7.8 ± 8.3 pM (volume-weighted average 6.1 pM). Acetate concentration in rainwater, measured in a subset of samples, ranged from 0.34 to 3.1 μM, and averaged 1.6 ± 0.9 μM (volume-weighted average 1.3 μM). Dimethylmercury (DMHg) concentrations were below the limit of detection in air (<0.01 ng m?3) and rainwater (<0.05 pM). Despite previous suggestions that DMHg in upwelled ocean waters is a potential source of MMHg in coastal rainwater, MMHg in rain was not related to coastal upwelling seasons or surface water DMHg concentrations. Instead, a multiple linear regression analysis demonstrated that MMHg concentrations were positively and significantly correlated (p = 0.002, adjusted R2 = 0.88) with those of acetate and HgR. These data appear to support previous suggestions that the aqueous phase methylation of Hg(II) by acetate may be the source of MMHg in rainwater, but imply that acetate concentrations in rainwater play a more important role relative to HgR than previously hypothesized. However, the calculated chemical speciation of Hg(II) in rainwater and the minimal predicted complexation of Hg(II) by acetate suggest that the aqueous phase methylation of Hg(II) by acetate is unlikely to account for the MMHg found in precipitation, or that the mechanism of this reaction in the atmosphere differs from that previously reported (Gardfeldt et al., 2003).  相似文献   

19.
A series of field studies were carried out in London, UK, during 1999–2000 in which over 400 fine particle (PM2.5) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments. This was the first comprehensive PM2.5 personal exposure study of transport users. Both a fixed-route multi-transport mode study and a study of cyclists’ commuter journeys were undertaken. Subsequent to these field studies regression modelling of possible influencing factors of these exposure levels was carried out. Meteorological variables, traffic density, mode and route were considered; the relationships of personal exposure levels with fixed site monitor (FSM) concentrations, and of the FSM concentrations with the potential predictor variables, were also investigated. This analysis of the determinants of transport user exposure to PM2.5 in London, UK, showed that wind speed had a significant influence on personal exposure levels, though explained only up to 20% of the variability of road transport user exposure levels. The occurrence of higher wind speeds was strongly associated with a decrease in personal exposure levels; a 1.5–2.0 fold difference in exposure level concentrations was estimated between the 10th and 90th percentiles of wind speed. Route was a significant factor, whilst mode was not a significant factor in the street microenvironment (between bicycle, bus and car modes); models incorporating route and mode, as well as wind speed, explained approximately 35% of the variability in PM2.5 exposure levels. Personal exposure levels were reasonably correlated with urban background FSM concentrations, for fixed-route road mode (bicycle, bus and car) exposure level concentrations, r=0.27 (p<0.01) and for commuter cyclists’ exposure level concentrations r=0.58 (p<0.01).  相似文献   

20.
From June 2013 to March 2015, in total 41 passive sampler deployments of 2 wk duration each were conducted at 17 sites in South Philadelphia, PA, with results for benzene discussed here. Complementary time-resolved measurements with lower cost prototype fenceline sensors and an open-path ultraviolet differential optical absorption spectrometer were also conducted. Minimum passive sampler benzene concentrations for each sampling period ranged from 0.08 ppbv to 0.65 ppbv, with a mean of 0.25 ppbv, and were negatively correlated with ambient temperature (–0.01 ppbv/°C, R2 = 0.68). Co-deployed duplicate passive sampler pairs (N = 609) demonstrated good precision with an average and maximum percent difference of 1.5% and 34%, respectively. A group of passive samplers located within 50 m of a refinery fenceline had a study mean benzene concentration of 1.22 ppbv, whereas a group of samplers located in communities >1 km distant from facilities had a mean of 0.29 ppbv. The difference in the means of these groups was statistically significant at the 95% confidence level (p < 0.001). A decreasing gradient in benzene concentrations moving away from the facilities was observed, as was a significant period-to-period variation. The highest recorded 2-wk average benzene concentration for the fenceline group was 3.11 ppbv. During this period, time-resolved data from the prototype sensors and the open-path spectrometer detected a benzene signal from the west on one day in particular, with the highest 5-min path-averaged benzene concentration measured at 24 ppbv.

Implications: Using a variation of EPA’s passive sampler refinery fenceline monitoring method, coupled with time-resolved measurements, a multiyear study in South Philadelphia informed benzene concentrations near facilities and in communities. The combination of measurement strategies can assist facilities in identification and mitigation of emissions from fugitive sources and improve information on air quality complex air sheds.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号