首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

2.
Weekly PM2.5 samples were simultaneously collected at a residential (Tsinghua University) and a downtown (Chegongzhuang) site in Beijing from July 1999 through September 2000. The ambient mass concentration and chemical composition of the PM2.5 were determined. Analyses included elemental composition, water-soluble ions, and organic and elemental carbon. Weekly PM2.5 mass concentrations ranged from 37 to 357 μg/m3, with little difference found between the two sites. Seasonal variation of PM2.5 concentrations was significant, with the highest concentration in the winter and the lowest in the summer. Spring dust storms had a strong impact on the PM2.5. Overall, organic carbon was the most abundant species, constituting no less than 30% of the total PM2.5 mass at both sites. Concentrations of organic and elemental carbon were 35% and 16% higher at Tsinghua University than at Chegongzhuang. Ammonium, nitrate and sulfate were comparable at the sites, accounting for 25–30% of the PM2.5 mass.  相似文献   

3.

Covid-19 lockdowns have improved the ambient air quality across the world via reduced air pollutant levels. This article aims to investigate the effect of the partial lockdown on the main ambient air pollutants and their elemental concentrations bound to PM2.5 in Hanoi. In addition to the PM2.5 samples collected at three urban sites in Hanoi, the daily PM2.5, NO2, O3, and SO2 levels were collected from the automatic ambient air quality monitoring station at Nguyen Van Cu street to analyze the pollution level before (March 10th–March 31st) and during the partial lockdown (April 1st–April 22nd) with “current” data obtained in 2020 and “historical” data obtained in 2014, 2016, and 2017. The results showed that NO2, PM2.5, O3, and SO2 concentrations obtained from the automatic ambient air quality monitoring station were reduced by 75.8, 55.9, 21.4, and 60.7%, respectively, compared with historical data. Besides, the concentration of PM2.5 at sampling sites declined by 41.8% during the partial lockdown. Furthermore, there was a drastic negative relationship between the boundary layer height (BLH) and the daily mean PM2.5 in Hanoi. The concentrations of Cd, Se, As, Sr, Ba, Cu, Mn, Pb, K, Zn, Ca, Al, and Mg during the partial lockdown were lower than those before the partial lockdown. The results of enrichment factor (EF) values and principal component analysis (PCA) concluded that trace elements in PM2.5 before the partial lockdown were more affected by industrial activities than those during the partial lockdown.

  相似文献   

4.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

5.
Children’s exposures to ambient and non-ambient fine particulate matter (PM2.5) were determined using the sulphate and elemental carbon components of the PM2.5 mixture as tracers of the ambient contribution during a 6-week winter period in Prince George, British Columbia, Canada. Personal exposures to PM2.5 were measured in children at 5 elementary schools located throughout the city and ambient samples were collected on school rooftops. Average ambient levels and personal exposures during this time period were 13.8 μg m?3 and 16.4 μg m?3 respectively. From the data pooled across individuals, use of the two different tracers indicated identical estimates of median exposure to ambient PM2.5 (7.5 μg m?3) and similar estimates of non-ambient generated exposure (6.4 and 5.0 μg m?3) and infiltration (0.49 and 0.52) for the sulphate and elemental carbon approach, respectively. The median fraction of the ambient concentration resulting in exposure or exposure factors were 0.54 and 0.55 respectively, however lower values of 0.46 and 0.42 were determined from regression analysis. A strong association was found between exposure to ambient PM2.5 and measured ambient concentrations at both the closest school monitor (median r = 0.92) and a central site (median r = 0.88) demonstrating that the central site monitor was suitable for assessing longitudinal ambient generated exposure throughout the city. These results support the use of elemental carbon as a tracer of ambient generated exposure and the use of ambient data as estimates of longitudinal changes in children’s exposure in this setting. The importance of both ambient and non-ambient sources of PM2.5 is emphasized by their almost equal contribution to total personal exposures. Comparison with other studies suggests a limited influence of climate and the cold season in Prince George on exposure levels and found similar mean non-ambient generated exposures despite large variability across and within subjects in any given location.  相似文献   

6.
Outdoor levels of fine particles (PM2.5; particles <2.5 μm) have been associated with cardiovascular health. Persons with existing cardiovascular disease have been suggested to be especially vulnerable. It is unclear, how well outdoor concentrations of PM2.5 and its constituents measured at a central site reflect personal exposures in Southern European countries. The objective of the study was to assess the relationship between outdoor and personal concentrations of PM2.5, absorbance and sulphur among post-myocardial infarction patients in Barcelona, Spain.Thirty-eight subjects carried personal PM2.5 monitors for 24-h once a month (2–6 repeated measurements) between November 2003 and June 2004. PM2.5 was measured also at a central outdoor monitoring site. Light absorbance (a proxy for elemental carbon) and sulphur content of filter samples were determined as markers of combustion originating and long-range transported PM2.5, respectively.There were 110, 162 and 88 measurements of PM2.5, absorbance and sulphur, respectively. Levels of outdoor PM2.5 (median 17 μg m3) were lower than personal PM2.5 even after excluding days with exposure to environmental tobacco smoke (ETS) (median after exclusion 27 μg m3). However, outdoor concentrations of absorbance and sulphur were similar to personal concentrations after exclusion of ETS. When repeated measurements were taken into account, there was a statistically significant association between personal and outdoor absorbance when adjusting for ETS (slope 0.66, p<0.001), but for PM2.5 the association was weaker (slope 0.51, p=0.066). Adjustment for ETS had little effect on the respective association of S (slope 0.69, p<0.001).Our results suggest that outdoor measurements of absorbance and sulphur can be used to estimate both the daily variation and levels of personal exposures also in Southern European countries, especially when exposure to ETS has been taken into account. For PM2.5, indoor sources need to be carefully considered.  相似文献   

7.
In this study, the seasonal variation of different types of particulates was investigated in a fixed roadside station in heavily trafficked urban area of Hong Kong. Aerosol samples for total suspended particles (TSP), PM10 and PM2.5 were collected from June 1998 to May 1999 at a roadside site. Meteorological conditions such as relative humidity (RH), rainfall and prevailing wind direction were found to affect the mass concentration of TSP, PM10 and coarse particulates at roadside level. Large size particles had an apparent seasonal variation, with higher concentration level in winter and lower in summer. The dry continental winter monsoon and the wet oceanic summer monsoon are the dominating factors. On the other hand, annual variation of PM2.5 is relatively insignificant, suggesting that they are mainly from local traffic emission. PM10 accounted for 62% of the TSP, while PM2.5 accounted for 46%. The annual PM2.5/PM10 is high with PM2.5 responsible for 74% of PM10. In our heavily trafficked roadside fixed site, TSP exceeded the annual average of the Hong Kong Air Quality Objective by a factor of 1.53 while PM10 exceeded by 1.39. The annual average concentration of PM2.5 exceeded the National Ambient Air Quality Standard (NAAQS) annual average of 15 μg m−3 by a factor of 3.8 and is a cause of concern. A total of the 24 h average PM2.5 exceeded NAAQS by 33%. According to our data reported, fine particulate pollution is serious in Hong Kong.  相似文献   

8.
Recent studies have used land use regression (LUR) techniques to explain spatial variability in exposures to PM2.5 and traffic-related pollutants. Factor analysis has been used to determine source contributions to measured concentrations. Few studies have combined these methods, however, to construct and explain latent source effects. In this study, we derive latent source factors using confirmatory factor analysis constrained to non-negative loadings, and develop LUR models to predict the influence of outdoor sources on latent source factors using GIS-based measures of traffic and other local sources, central site monitoring data, and meteorology. We collected 3–4 day samples of nitrogen dioxide (NO2) and PM2.5 outside of 44 homes in summer and winter, from 2003 to 2005 in and around Boston, Massachusetts. Reflectance analysis, X-ray fluorescence spectroscopy (XRF), and high-resolution inductively-coupled plasma mass spectrometry (ICP-MS) were performed on particle filters to estimate elemental carbon (EC), trace element, and water-soluble metals concentrations. Within our constrained factor analysis, a five-factor model was optimal, balancing statistical robustness and physical interpretability. This model produced loadings indicating long-range transport, brake wear/traffic exhaust, diesel exhaust, fuel oil combustion, and resuspended road dust. LUR models largely corroborated factor interpretations through covariate significance. For example, ‘long-range transport’ was predicted by central site PM2.5 and season; ‘brake wear/traffic exhaust’ and ‘resuspended road dust’ by traffic and residential density; ‘diesel exhaust’ by percent diesel traffic on nearest major road; and ‘fuel oil combustion’ by population density. Results suggest that outdoor residential PM2.5 source contributions can be partially predicted using GIS-based terms, and that LUR techniques can support factor interpretation for source apportionment. Together, LUR and factor analysis facilitate source identification, assessment of spatial and temporal variability, and more refined source exposure assignment for evaluation of source contributions to health outcomes in epidemiological studies.  相似文献   

9.
Factors and sources affecting measurement uncertainty associated with monitoring metals in airborne particulate matter (PM) were investigated as part of the Windsor, Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate samples and a comparison of two analytical approaches: ED-XRF and ICP-MS. Sampling variability was estimated using relative percent difference (RPD) of co-located duplicate samples. The comparison of ICP-MS and ED-XRF results yields very good correlations (R2 ≥ 0.7) for elements present at concentrations that pass both ICP-MS and ED-XRF detection limits (e.g. Fe, Mn, Zn, Pb and Cu). PM concentration ranges (median, sample number) of 24-h indoor PM10 and personal PM10 filters, and outdoor PM2.5 filters were determined to be 2.2–40.7 (11.0, n = 48) μg m?3, 8.0–48.3 (11.9, n = 48) μg m?3, and 17.1–42.3 (21.6, n = 18) μg m?3, respectively. The gravimetric analytical results reveal that the variations in PM mass measurements for same-day sampling are insignificant compared to temporal or spatial variations: 92%, 100% and 96% of indoor, outdoor and personal duplicate samples, respectively, pass the quality criteria (RPD ≤ 20%). Uncertainties associated with ED-XRF elemental measurements of S, Ca, Mn, Fe and Zn for 24-h filter samples are low: 78%–100% of the duplicate samples passed the quality criteria. In the case of 24-h filter samples using ICP-MS, more elements passed the quality criteria due to the lower detection limits. These were: Li, Na, K, Ca, Si, Al, V, Fe, Mn, Co, Cu, Mo, Ag, Zn, Pb, As, Mg, Sb, Sn, Sr, Th, Ti, Tl, and U. Low air concentrations of metals (near or below instrumental detection limits) and/or inadvertent introduction of metal contamination are the main causes for excluding elements based on the pass/fail criteria. Uncertainty associated with elemental measurements must be assessed on an element-by-element basis.  相似文献   

10.
11.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

12.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

13.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

14.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

15.
PM2.5 aerosols were sampled and atmospheric 222Rn (radon) was measured, at Hong Kong, China, over 3 years 2001–2003. The aerosol samples were analysed using accelerator-based Ion Beam Analysis (IBA) techniques to provide quantitative information on 21 of their major and minor elemental contributions. The radon concentration on aerosol sampling days was then used to classify the degree of land contact (high or low) experienced by air masses en route to the receptor site. It was found that elements known to originate from anthropogenic sources (e.g. Zn, K, Br, Pb and Black Carbon) were positively correlated with observed radon concentration. An eight-factor Positive Matrix Factorisation (PMF) analysis was performed on the data set, which resulted in elemental profiles (“fingerprints”) for eight potential sources and we identified source factors that were correlated with radon. The Potential Source Contribution Function technique was then used to identify the geographic regions most likely to have significantly contributed to the aerosol samples collected at the receptor site.  相似文献   

16.
17.
Twenty-eight polycyclic aromatic hydrocarbons (PAH) and methylated PAHs (Me-PAH) were measured in daily PM2.5 samples collected at an urban site, a suburban site, and a rural site in and near Atlanta during 2004 (5 samples/month/site). The suburban site, located near a major highway, had higher PM2.5-bound PAH concentrations than did the urban site, and the rural site had the lowest PAH levels. Monthly variations are described for concentrations of total PAHs (∑PAHs) and individual PAHs. PAH concentrations were much higher in cold months than in warm months, with average monthly ∑PAH concentrations at the urban and suburban-highway monitoring sites ranging from 2.12 to 6.85 ng m?3 during January–February and November–December 2004, compared to 0.38–0.98 ng m?3 during May–September 2004. ∑PAH concentrations were found to be well correlated with PM2.5 and organic carbon (OC) within seasons, and the fractions of PAHs in PM2.5 and OC were higher in winter than in summer. Methyl phenanthrenes were present at higher levels than their un-substituted homologue (phenanthrene), suggesting a petrogenic (unburned petroleum products) input. Retene, a proposed tracer for biomass burning, peaked in March, the month with the highest acreage and frequency of prescribed burning and unplanned fires, and in December, during the high residential wood-burning season, indicating that retene might be a good marker for burning of all biomass materials. In contrast, potassium peaked only in December, indicating that it might be a more specific tracer for wood-burning.  相似文献   

18.
Abstract

The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998–1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10–2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999–2003) of filter-based PM2.5 and PM10–2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 µg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 µg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3–7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for ≥60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components (“other”) account for ≥80% of PM10–2.5 mass. Limited data suggest that much of the unidentified mass in PM10–2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and “other.” Annual means for PM2.5 and PM10–2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999–2003 period (10–20% in the case of PM2.5, dominated by 14–20% declines in sulfate and 11–26% declines in OM, and 14–25% in the case of PM10–2.5, dominated by 17–30% declines in MMO and 14–31% declines in “ other”). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

19.
Concentrations and distributions of elemental carbon (EC) and organic carbon (OC) in particles were measured in Kaohsiung City, Taiwan. PM10 and PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and were analyzed for carbonaceous species with an elemental analyzer. The concentrations of carbonaceous species in Kaohsiung City were comparable to those at other urban locations in the world. On average, carbonaceous species accounted for 21.2% of the PM2.5 and 18.1% of the PM10. It was found that organic carbon dominated the carbonaceous species and was 72.2 and 70.4% of total carbon (TC) for PM2.5 and PM10. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between elemental and organic carbon obtained in this study, and was found to constitute 40.0 and 32.4% of the total organic carbon particle for PM2.5 and PM10 (or 6.6 and 4.5% of the total particle mass).  相似文献   

20.
Size-segregated aerosol samples (PM2.5 and PM10) were collected during Jan–Dec-2007 from a high-altitude site located in a semi-arid region (Mt. Abu, 24.6 °N, 72.7 °E, 1680 m asl) in order to asses the temporal variability in the abundance of atmospheric mineral dust and its elemental composition over western India. The mass concentrations of fine (PM2.5) and coarse (PM10–2.5) mode aerosols varied from 1.6 to 46.1 and 2.3 to 102 μg m?3 respectively over the annual seasonal cycle; with dominant and uniform contribution of mineral dust (60–80%) in the coarse mode relative to large temporal variability (11–75%) observed in the fine mode. The coarse mass fraction shows a characteristic increase with the wind speed during summer months (Mar to Jun); whereas fine aerosol mass and its elemental composition exhibit conspicuous temporal pattern associated with north-easterlies during wintertime (Oct–Feb). The Fe/Al weight ratio in PM2.5 ranges from 0.5 to 1.0 during winter months. The relative enrichment of Fe in fine mode, compared to the crustal ratio of 0.44, is attributed to the down-wind advective transport of combustion products derived from large-scale biomass burning, industrial and automobile emission sources located in the Indo-Gangetic Plain (northern India). In contrast, Ca/Al and Mg/Al weight ratios show relative enrichment of Ca and Mg in the coarse mode; indicating their dominant contribution from carbonate minerals. This has implication to efficient neutralization of atmospheric acidic species (SO42? and NO3?) by mineral dust over western India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号