首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric mercury speciation was monitored within Houston, Texas, USA, August 6–October 14, 2006 as part of the TexAQS Radical and Aerosol Measurement Program (TRAMP). On average, all mercury levels were significantly elevated compared to a rural Gulf of Mexico coastal site. Concentrations varied from very clean to very dirty. Multi-day periods of stagnant or low-wind conditions brought elevated concentrations of all mercury species, whereas multi-day periods of strong winds, particularly southerly winds off the Gulf of Mexico, brought very low values of mercury species. Over the entire mercury measurement period, the daily averages of mercury species showed distinct and consistent relationships with the average planetary boundary layer dynamics, with gaseous elemental and particulate-bound mercury near-surface concentrations enhanced by a shallow nocturnal boundary layer, and reactive gaseous mercury concentration enhanced by midday convective boundary layer air entrainment transporting air aloft to the surface. Mercury concentrations were not significantly correlated with known products of combustion, likely indicating non-combustion mercury sources from the Houston area petrochemical complexes. On the morning of August 31, 2006 an observed emission event at a refinery complex on the Houston Ship Channel resulted in extremely high concentrations of aerosol mass and particulate-bound mercury at the TRAMP measurement site 20 km downwind.  相似文献   

2.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   

3.
Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL.

Implications: Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.  相似文献   


4.
Diurnal variations of wind field and pollutant dispersion in a complex terrain with a shoreline were investigated under the insolation conditions of summer and winter. The area is located in the south of the Korean Peninsula and includes a large petrochemical industrial complex. The Regional Atmospheric Modeling System (RAMS) was used in the simulation study. Initially, horizontally homogeneous wind fields were assumed on the basis of sounding data at the nearby upper-air station for days with morning wind speeds below 2 m s−1. On these days, the sea breeze prevailed in summer while the land breeze lasted for a few hours in the morning; the effect of synoptic winds was strong in winter with some inclusion of wind variations owing to the interaction between sea and land. The predicted wind direction at the location of the weather station captured an important change of the sea/land breeze of the observed one. In the morning, both in summer and winter, complicated wind fields with low wind speeds resulted in high pollutant concentrations almost all over the area. On the other hand, in the afternoon, the wind field was rather uniform and the terrain effects were not significant even in the mountainous area with the development of a mixing layer.  相似文献   

5.
The relationship between near-surface ozone concentration and the structure of the nocturnal boundary layer was investigated during a field campaign conducted in 1998 in the Lower Fraser Valley (LFV), British Columbia Canada. Despite the spatial and temporal variation in frequency and morphology, secondary nocturnal ozone maxima were shown to be an important feature of the diurnal ozone cycle throughout the LFV, and localised increases in ozone occasionally exceeded more than half the previous day's maximum concentration.Turbulence in the nocturnal boundary layer was shown to be weak and intermittent. Vertical profiles of Richardson number and ozone concentration indicated that the temporary turbulent coupling of the residual layer to the surface layer facilitated the transport of ozone stored aloft to the surface. Despite the overall complexity of the system, results show that seven out of the 19 ozone spikes observed at the Aldergrove site coincided with turbulence associated with the development of the down-valley wind system. A further nine spikes occurred during periods when a low-level jet was identified aloft. Significantly, ozone concentrations were shown to be highly variable in the residual layer and played an important role in determining the morphology of secondary ozone maxima at the surface. Largest increases in surface ozone concentration occurred when turbulence coincided with periods when ozone concentrations in excess of 80 ppb were observed aloft.  相似文献   

6.
In this study, the sensitivity of trajectory paths to anomalous soil moisture was analyzed during three different synoptic episodes in June 2006. The MM5 and Noah land surface models were used to simulate the response of the planetary boundary layer. The HYSPLIT model was used for trajectory analysis. It was found that the response in horizontal lower-level wind field was larger at regions where vertical wind velocity changes were also large. In addition, the sensitivity to soil moisture changes was significant and localized where convective activity was well developed and synoptic effects did not dominate. A non-local effect was felt over the rest of the domain where convection was not present since the model atmosphere reacted as a whole to compensate for induced changes in vertical velocity. This finding was supported by the fact that domain averaged vertical velocities changes were of the order of 0.2 cm s?1 or less at about 650 hPa and about 200 times smaller than modeled local vertical velocity changes. The largest change in horizontal wind field near the surface was found for weak synoptic events on June 11–12 and June 22–23 while the stronger synoptic event of June 17–18 showed smaller differences. These changes in wind field conditions impacted the transport and dispersion of pollutants. To quantify the sensitivity of air quality estimates to soil moisture uncertainty, we have used three well known measures of trajectory differences: the absolute horizontal transport deviation (AHTD), the relative horizontal transport deviation (RHTD) and the absolute vertical transport deviation (AVTD) for an ensemble of 98 trajectories departing from a region well within the computational domain. For the June 11–12 event it was found that for wet and dry soil moisture experiments, AHTD, RHTD, and AVGTD can reach values in the range 60–100 km, 10–20% and 500–900 m at 24 h run time, respectively. For the June 17–18 and June 22–23 events these values of trajectory differences were reduced more than half. These differences in behavior between time periods are largely attributed to the combined effects of synoptic forcing and the sensitivity of planetary boundary layer to soil moisture changes during well developed convection. The implication for air quality studies is that the soil moisture anomaly and related uncertainty in planetary boundary layer response needs to be incorporated in order to construct an ensemble of the most probable scenarios in which pollutants are released and transported throughout a given target region.  相似文献   

7.
The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25–65 W m-2, corresponding to relative differences of 20–60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.  相似文献   

8.
9.
ABSTRACT

A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/ EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

10.
Aerosol temporal and spatial distributions during wintertime temperature inversions in Gothenburg, Sweden, have been characterized by ground-based and airborne particle measurements combined with lidar measurements. Ground inversions frequently developed during evenings and nights with stable cold conditions, and the low wintertime insolation often resulted in near neutral boundary layer conditions during day-time. Under these conditions ground level aerosol concentrations peaked during morning rush hours and often remained relatively high throughout the day due to inefficient ventilation. The particle number concentrations decreased slowly with increasing altitude within the boundary layer, and measurements slightly above the boundary layer suggested limited entrainment of polluted air into the free troposphere. High concentrations of ultrafine particles were observed throughout the boundary layer up to altitudes of 1100 m, which suggested that nucleation took place within the residual layer during the night and early morning. Recently formed particles were also observed around midday when the layer near ground was ventilated by mixing into the boundary layer, which indicated that ultrafine particles were either transported down from the residual layer to ground level or formed when the polluted surface layer mixed with the cleaner air above.  相似文献   

11.
A series of twelve intensively monitored 1-hr CO dispersion studies were conducted near Davis, CA, in winter 1996. The experimental equipment included twelve CO sampling ports at elevations up to 50 m, three sonic anemometers, a tethersonde station, aircraft measurements of wind and temperature profile aloft, and a variety of conventional meteorological equipment. The study was designed to explore the role of vehicular exhaust buoyancy during worst-case meteorological conditions, such as low winds oriented in near-parallel alignment with the road during a surface-based nocturnal inversion. From the study, field estimates of the CO emission factor (EF) from a California vehicle fleet were computed using two different methods. The analysis suggests that the CT-EMFAC/EMFAC (EMission FACtor) models currently used to conduct federal conformity modeling significantly overpredict CO emissions for high-speed, free-flowing traffic on California highways.  相似文献   

12.
The sensitivity of mesoscale simulations of land and sea breeze circulation on the south east coast in the Chennai region of India to boundary layer turbulence parameterizations is studied using the community based PSU/NCAR mesoscale model MM5. High-resolution simulations are carried out with nested domains. Four widely used boundary layer turbulence parameterization schemes are selected for the study. Two of these schemes (Blackadar (BK) and medium range forecast (MRF)) are simple first-order non-local schemes and the other two (Mellor–Yamada (MY) Eta planetary boundary layer (PBL) and Gayno–Seaman (GS)) are more complex 1.5 order local schemes that include a prognostic equation for turbulence kinetic energy. The other physics used in the model are identical. The micro-meteorological tower and flux observations, GP sonde and radiosonde observations from the study region are used to compare the simulated mean variables. In spite of differences in complexity, all the schemes show similar capability in simulating the boundary layer temperature, humidity and winds. The land–sea breeze circulation and internal boundary layer formation, which are special phenomena at the coastal site, could be simulated by all the schemes. The BK, MRF schemes produced boundary layers that are more mixed than those produced with the MY and GS schemes. While all the schemes underestimated surface sensible heat fluxes during stable night conditions they are reasonably simulated during daytime by MRF and BK schemes. Among the tested schemes, the BK scheme has reasonably produced the PBL height, humidity, wind fields and proves suitable for operational forecasting. The results suggest that there is little improvement in overall accuracy of predictions with more complex turbulence parameterizations.  相似文献   

13.
Comparisons are presented of the predictions of the atmospheric dispersion modelling system (ADMS) and wind tunnel data for plume dispersion from chemical warehouse fires. The focus of the comparisons is dispersion from structurally intact buildings with open roofs and dispersion of plumes flush with the ground without obstacles, however, dispersion from building shells and doors is also considered. Both buoyancy driven and momentum driven flows are treated, although emphasis is on buoyancy driven flows as these are generally more likely to occur in warehouse fires. The study shows that the ADMS building module is able to reproduce many of the features of dispersion observed in the wind tunnel. These include a recirculating region behind the building in which material may be trapped, a main wake which brings material down towards the surface, and appropriate sensitivity to the buoyancy and momentum of the emitted material, and the location of sources on the building roof. The comparisons suggest that the ADMS building model can be used to predict dispersion from the stages of fire development studied. The precise level of agreement depends (but not in a systematic way) on the buoyancy flux parameter FB, the momentum flux parameter FM and the number of roof lights. There are some significant differences between the wind tunnel boundary layer and the simulated atmospheric boundary layer in ADMS which have to be considered when making wind tunnel model comparisons. These relate mainly to the near surface where the wind tunnel underestimates turbulent velocities, the boundary layer height which in the wind tunnel corresponds to an atmospheric boundary layer depth of 82.5 m (atmospheric boundary layers are frequently an order of magnitude deeper), and the boundary layer top where the ADMS boundary layer is capped by an inversion and has low turbulence levels whereas the wind tunnel boundary layer has higher levels of turbulence and no capping inversion.  相似文献   

14.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

15.
Results from an experimental campaign at the coastline of the Saronic Gulf during the summer of 1992 are presented. The frontal intensity and the rotation of the wind hodograph at the shoreline during sea-breeze case:; are examined under different background flow conditions. The frontal intensity classification is based on the vertical velocities induced, as measured by a high resolution acoustic sounder. Three representative cases are presented. Conclusions are based on the analysis of all observed sea-breeze flows. Background off-shore or shore-parallel flows are more probable to create a strong or weak front, respectively. The development of frontal characteristics under background on-shore flow is attributed to off shore land features. The wind hodograph rotation is shown to be associated to the initial direction of the sea breeze, which is determined by the background flow direction. When the background flow possesses a westerly component the hodograph shows anticlockwise rotation, while an easterly background component causes the wind vector rotation to be clockwise.  相似文献   

16.
A DeHavilland DHC-6 Twin Otter, operated by the National Oceanic and Atmospheric Administration, was deployed in Tampa, FL to measure aerosols and primary and secondary trace gases in support of the Bay Regional Atmospheric Chemistry Experiment (BRACE). The Twin Otter repeatedly overflew the surface chemistry monitoring super site near Sydney, FL to assess the comparability of surface and airborne datasets and the spatial representativeness of the surface measurements. Prior to comparing the chemical datasets, we evaluated the comparability of the standards used to calibrate surface and airborne detectors, as well as the uniformity of wind fields aloft and at the surface. Under easterly flow, when the dearth of significant upwind emission sources promoted chemical homogeneity at Sydney, trace gas concentrations at the surface and aloft were generally well correlated; R2 ranged from 0.4396 for H2O2 to 0.9738 for O3, and was typically better than 0.70 for NO, NO2, NOY, HNO3, HCHO, and SO2. Mean ratios of aircraft-to-surface concentrations during 10 overflights of Sydney were as follows: 1.002±0.265 (NO), 0.948±0.183 (NO2), 1.010±0.214 (NOY), 0.941±0.263 (HCHO), and 0.952±0.046 (O3). Poorer agreement and larger variability in measured ratios were noted for SO2 (1.764±0.559), HNO3 (1.291±0.391), and H2O2 (1.200±0.657). Under easterly flow, surface measurements at Sydney were representative of conditions over horizontal scales as large as 50 km and agreed well with airborne values throughout the depth of the turbulently mixed boundary layer at mid-day. Westerly flow advected the Tampa urban plume over the site; under these conditions, as well as during transitional periods associated with the development of the land–sea breeze, surface conditions were representative of smaller spatial scales. Finally, we estimate possible errors in future measurement-model comparisons likely to arise from fine scale (or subgrid;<2 km) variability of trace gas concentrations. Large subgrid variations in concentration fields were observed downwind of large emission point sources, and persisted across multiple model grid cells (distances>4 km) in coherent plumes. Variability at the edges of the well-mixed urban plume, and at the interface of the land–sea breeze circulation, was significantly smaller. This suggests that even a failure of modeled wind fields to resolve the sea breeze return can induce moderate, but not overwhelming, errors in simulated concentration fields and dependent chemical processes.  相似文献   

17.
A new methodology is described for determining the atmospheric emission rate of pollutants from large heterogeneous area sources, such as hazardous waste sites. The procedure hinges upon measuring average pollutant concentrations, at three or more different elevations, while traversing the plume downwind of the area source. A helium-filled tethersonde balloon is used to elevate the sampling lines to their appropriate height. During plume traversing the sampling rate is adjusted to be proportional to the sine of the angle between the wind vector and the direction of the traverse path. The average concentrations are corrected for any upwind, background concentration and then used to derive an average vertical concentration profile. This profile Is numerically integrated, with the wind velocity profile, over the pollutant boundary layer to yield the area source emission rate. The methodology was tested on several large industrial effluent lagoons and proved to be easy to use, robust, and precise.  相似文献   

18.
Determining the destructions of both ozone and odd oxygen, Ox, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of Ox can also be determined simultaneously. The method is based on O3 and NO2 profiles and their surface measurements. Linkages between the dry deposition velocities of O3 and NO2 and between the dry deposition loss of Ox and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O3 dry deposition velocities from 0.13 to 0.19 cm s?1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of Ox, dry deposition of NO2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O3 and Ox in a polluted environment.  相似文献   

19.
Due to the complexity of the underlying surface, urban boundary layers may exhibit very different wind-temperature field structures compared with rural areas. In this study, an urban boundary layer model with a resolution of 500 m is applied to Hong Kong, a place characterized by complex topography with high mountains and dense urban developments. Five surface land use types are considered; grass and shrub land, trees, water, old urban areas and new town developments. The urban boundary layer model is embedded into the National Center for Atmospheric Research (NCAR) Mesoscale Model, version 5 (MM5). The initial and boundary conditions are obtained from the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis dataset. The modeling approach therefore takes into account both the mesoscale background field and the urban underlying surface. The model is applied to the simulation of a pollution episode in Hong Kong. Results show good agreement with meteorological data for the surface winds and temperature. The model successfully simulates the urban heat island and the occurrence of a sea–land breeze circulation, and their impact on air pollutant transport and dispersion.  相似文献   

20.
A wind tunnel experiment was carried out to simulate stack gas diffusion within an unstable atmospheric boundary layer over a coastal region. The wind tunnel floor, 4 m leeward of the entrance of the test section, was heated to 90°C over a length of 6 m in the streamwise direction, and wind tunnel experiments were performed under the flat plate condition with a prototype-to-model length scale ratio of 1200. Three similarity criteria of flow fields in the wind tunnel and in atmosphere, viz., bulk Richardson number, surface Reynolds number and the ratio of the Peclet number to the Richardson number, were considered in the wind tunnel experiment. Tracer gas was released along the coastline at a height of 10 cm, which corresponded to 120 m in height in atmosphere. The obtained wind tunnel experimental results of ground level concentration were compared with 30-min average values of the field experiments, viz., the data from the Tokai 82 field experiment. The maximum ground level concentration and its location were accurately simulated when there was close similarity between the wind tunnel and atmospheric flow conditions. The maximum concentration increased and occurred closer to the source when the level of convection was relatively stronger in atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号