首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper evaluates the role of Saharan dust advection in the exceeding of the PM10 thresholds in the city of Rome, Italy. To this purpose, a series of observations and model forecasts recorded in the year 2001 are analysed and discussed. Lidar profiles collected over 168 days of the year are employed to both assess the presence and magnitude of Saharan dust layers over the city and to evaluate the depth of the planetary boundary layer. Backtrajectories are used to verify the Saharan origin of the lidar-sounded air masses. Model predictions of the presence of Saharan dust over the area are employed to fill the time gaps between lidar observations. PM10 and carbon monoxide records of both a city background (Villa Ada) and a heavy traffic station (Magna Grecia) are cross-analysed with the dust events record and meteorological data. The analysis shows that: (1) Saharan dust was advected over Rome on about 30% of the days of 2001; (2) mean contribution of Saharan dust transport events to daily PM10 levels was of the order of 20 μg m−3; (3) at the urban background station of Villa Ada, the Saharan contribution caused the surpassing of the maximum number of days in excess of 50 μg m−3 fixed by the current legislation (35 per year). Conversely, at the heavy traffic station of Magna Grecia the Saharan contribution was not determinant at causing the observed large exceeding of that limit, as well as of the maximum yearly average of 40 μg m−3; (4) 25% of the Saharan advection days (of the order of 100/year at Rome) led to a PM10 increase >30 μg m−3, 4% caused an increase >50 μg m−3, thus leading on their own to surpassing the 50 μg m−3 daily limit.  相似文献   

2.
Decades-long monitoring of anthropogenic radionuclides in the atmospheric deposition in Tsukuba, Japan suggests not only the substantial impacts of the Asian dust (Kosa) on the deposition but also the possible change of the Kosa source region, especially during springs of the 2000s. In order to know more about such change, 4 single wet deposition events occurred in the spring of 2007 were scrutinized. The largest anthropogenic radionuclides wet deposition was supplied by the April 2–4 event. It brought several tens % of the monthly depositions (April 2007) of the dust (residue) mass (4.5 g m?2) and anthropogenic radionulides (90Sr: 16, 137Cs: 97 and Pu: 3 mBq m?2). None of the events observed fulfilled both criteria of the specific activities and 90Sr/137Cs activity ratio to the Tsukuba soil; they did not exhibit local soil dust signature. The Kosa events in fact have extensive impacts on the atmospheric environment over Japan in spring season. Considering the elevated specific activities as well as greater 137Cs/90Sr activity ratio in the deposited dust, it is hypothesized that the dust source areas in Asian continent would be shifting from the arid zone to the desert-steppe zone suffering from desertification during the 2000s. This type of the Kosa may be called as the ‘new-regime Kosa’. Chemical observation in the far downwind region of the Kosa dust could allow us to know possible shift in the source regions.  相似文献   

3.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

4.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   

5.
Quantitative information on the contribution of dust storms to atmospheric PM10 (particulate matter with an aerodynamic diameter ≤10 µm) levels is still lacking, especially in urban environments with close proximity to dust sources. The main objective of this study was to quantify the contribution of dust storms to PM10 concentrations in a desert urban center, the city of Beer-Sheva, Negev, Israel, during the period of 2001–2012. Toward this end, a background value based on the “dust-free” season was used as a threshold value to identify potentially “dust days.” Subsequently, the net contribution of dust storms to PM10 was assessed. During the study period, daily PM10 concentrations ranged from 6 to over 2000 µg/m3. In each year, over 10% of the daily concentrations exceeded the calculated threshold (BVt) of 71 µg/m3. An average daily net contribution of dust to PM10 of 122 µg/m3 was calculated for the entire study period based on this background value. Furthermore, a dust storm intensity parameter (Ai) was used to analyze several storms with very high PM10 contributions (hourly averages of 1000–5197 μg/m3). This analysis revealed that the strongest storms occurred mainly in the last 3 yr of the study. Finally, these findings indicate that this arid urban environment experiences high PM10 levels whose origin lies in both local and regional dust events.

Implications:The findings indicate that over time, the urban arid environment experiences high PM10 levels whose origin lies in local and regional dust events. It was noticed that the strongest storms have occurred mainly in the last 3 yr. It is believed that environmental changes such as global warming and desertification may lead to an increased air pollution and risk exposure to human health.  相似文献   


6.
In this study the frequencies of PM10 (as key urban pollutant) in 14 key environmental protection cities in northern China were analyzed. It follows that the PM10 concentration in the high-frequency period is higher with an extent 0.009–0.066 mg m−3 than in the low-frequency period of 2001–2002. Further the impacts of three kinds of dust events on the PM10 concentration in four cities (Beijing, Hohhot, Xi’an and Lanzhou) were explored. The results showed that different kinds of dust events have different influences on variation of PM10 concentration in these four cities. In Lanzhou and Hohhot, which are near the source areas of dust events, the contribution degree of these three dust events to the PM10 is: floating dust>dust storm>blowing dust. Whereas, in Beijing and Xi’an situated in dust event passing areas, the mean value of PM10 concentration is higher in blowing dust than in floating dust (no dust storm). In addition, the influences of dust events on PM10 concentration are different in the cities on different dust event paths. In Beijing and Hohhot (on the northern path), the high PM10 concentration is usually caused by blowing dust. But in both Lanzhou and Xi’an (on the western/northwestern path) the high PM10 pollution concentration is usually caused by floating dust.  相似文献   

7.
The influence of two intensive low-altitude atmospheric-dust intrusions on the activity levels of 137Cs and 40K as well as atmospheric particle matter (PM10) concentrations in the lower atmosphere of the Canary Islands are analysed here. These two events took place at the beginning of January 2002 and March 2004, respectively. 3D atmospheric back-trajectories indicated that the main source of dust material involved in the considered atmospheric intrusions came from NW Africa. A consequence of these dust intrusions was the major increase of PM10 concentrations in the lower atmosphere. Both episodes were characterised by having weekly averages of PM10 concentration surpassing 150 μg m−3, higher than the daily PM10 limit value established by the EC/1999/30 directive for PM10 from 2005. Similarly, during these two events, both 137Cs and 40K activities increased by a factor of 6 and 13 as well as 13 and 14, respectively, over the basal values calculated for each radionuclide and time period (0.59±0.02 and 0.88±0.07 μBq m−3 as well as 12±6 and 24±8 μBq m−3).  相似文献   

8.
The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM10 filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6?%. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.  相似文献   

9.
An Aerosol and Oceanographic Science Expedition (AEROSE) on the NOAA Ship Ronald H. Brown collected PM2.5 particles from a Saharan dust storm in March 2004. High levels of PM2.5 (120 μg m?3) were measured during this Saharan storm over the Atlantic Ocean. The particles were characterized for trace element content, with Al and Fe the most abundant metals. These metals were detected in high concentrations during the Saharan event and exhibited good correlations with PM2.5, suggesting its soil origin. Other elements (Pb, Ni, Cd) did not correlate with Al and Fe, indicating their anthropogenic origin. Enrichment factor calculation conducted on these trace elements support our findings. Trace element analyses performed on particulate matter from a reference site on land in Puerto Rico (Fajardo), demonstrated similar results to those obtained in the AEROSE expedition, where high concentrations of PM2.5 and Fe were present concomitantly with Saharan events at this station.  相似文献   

10.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

11.
The presence of cesium-137 (137Cs) in the environment is mainly due to past nuclear tests and accidental reactor releases. Due to the half-life of 137Cs (30.2 y), amounts of this radionuclide releases are in fact still detectable in soils, and at trace levels in the vegetation and the atmosphere. Since the middle of the 1990’s, the presence of 137Cs in the atmosphere has long been attributed to the resuspension of terrestrial dust. Recently, modelling studies have demonstrated that an additional and possibly dominant source of this anthropogenic radionuclide is biomass burning. Here, we report the variations of atmospheric 137Cs activity levels over a 2-year period at the puy de Dôme (1465 m a.s.l.), France in combination with measurements of the aerosol chemical composition, in particular with indicators for biomass burning (levoglucosan and potassium) and soil dust (calcium). Temporal co-variations of these chemical compounds in addition to back-trajectories are used to identify common source emissions. Significant correlation is found between these compounds. Hence, we experimentally confirm the modelling study highlighting the fact that the atmospheric 137Cs is partly released by biomass burning. In addition, we observed that the correlations between the 137Cs concentrations and levoglucosan and biomass burning K+ differ according to the season. This is in agreement with the temporal evolution of levoglucosan concentration, which has maxima in winter and minima in summer.  相似文献   

12.
ABSTRACT

In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter ≤10 μm [PM10]) and ozone (O3) concentrations and characterize the atmospheric conditions that lead to O3 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and O3 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in O3 values was also observed and discussed.

IMPLICATIONS In the summertime, the central-southern Mediterranean Basin is heavily affected by Saharan dust outbreaks and wildfire events. A focus on their significant influence on either oxidizing capacity of the atmosphere and air quality over Calabria, southern Italy, was here presented. Similar studies for most regions surrounding the Mediterranean Basin are needed to implement effective emission reduction measures, to prevent apparent air quality parameter exceedances and to define an appropriate health alert system. Because the frequency of these events is expected to increase due to climate change, these studies could even be a valid effort to better understand and characterize such atmospheric variations.  相似文献   

13.
The city of Aldama, Chihuahua, Mexico is located 30 km NNE of Chihuahua city. Three high-volume collectors with PM10 heads were placed in specific locations in Aldama during the year 2011 to measure radioisotope concentrations in the air. The city area of 16 km2 was divided into 64 squares of 500 × 500 m. At the vertices of the grid, silt samples were taken between January and June 2011, before the rains began. The concentrations of natural, cosmogenic, and anthropogenic radioactive isotopes were calculated in both filters and silts samples. The isotopes selected for the measurement were 238U, 232Th, 7Be, 137Cs, and 40K. Measurements of PM10 and silts were performed during 2011, coinciding with the accident at Fukushima, Japan, on March 11. For this reason, we could see the 137Cs in PM10 increase between April and July; with the arrival of the rains, the 137Cs concentration began to decrease in the air. The concentration of PM10 measured by the equipment located at the Mexican Uranium plant (URAMEX, initials in Spanish) that was processing radioactive ores exceeded the standard values in February and March, when the air velocity increases. At City Hall, the concentration of PM10 surpassed the value of the standard between May and July. This increased concentration is likely due to increased automobile traffic because City Hall is located in the city center. At a private home, the concentration of PM10 surpassed the standard on several days during the year because the home is located on the outskirts of the city, where most of the streets are not paved. Due to the high concentrations of PM10, especially at the collection point located at the private home, it is necessary to start taking steps to mitigate their spread before they cause health problems in the younger population and in older adults.

Implications: The radioisotope content found in the PM10 confirms that the decision to place the Mexican Uranium plant (URAMEX, initials in Spanish) processing radioactive ores near the town of Aldama was not well thought out. Because the monitoring work was carried out in 2011 and coincided with the Fukushima accident, an increased concentration of 137Cs could be detected in the PM10. We made recommendations to the municipal authorities of the city to mitigate the concentration of particles in the air.  相似文献   

14.
In recent years, many air quality monitoring programs have favored measurement of particles less than 2.5 µm (PM2.5) over particles less than 10 µm (PM10) in light of evidence that health impacts are mostly from the fine fraction. However, the coarse fraction (PM10-2.5) may have independent health impacts that support continued measurement of PM10 in some areas, such as those affected by road dust. The objective of this study was to evaluate the associations between different measures of daily PM exposure and two daily indicators of population health in seven communities in British Columbia, Canada, where road dust is an ongoing concern. The measures of exposure were PM10, PM2.5, PM10-2.5, PM2.5 adjusted for PM10-2.5, and PM10-2.5 adjusted for PM2.5. The indicators of population health were dispensations of the respiratory reliever medication salbutamol sulfate and nonaccidental mortality. This study followed a time-series design using Poisson regression over a 2003–2015 study period, with analyses stratified by three seasons: residential woodsmoke in winter; road dust in spring; and wildfire smoke in summer. A random-effects meta-analysis was conducted to establish a pooled estimate. Overall, an interquartile range increase in daily PM10-2.5 was associated with a 3.6% [1.6, 5.6] increase in nonaccidental mortality during the road dust season, which was reduced to 3.1% [0.8, 5.4] after adjustment for PM2.5. The adjusted coarse fraction had no effect on salbutamol dispensations in any season. However, an interquartile range increase in PM2.5 was associated with a 2.7% [2.0, 3.4] increase in dispensations during the wildfire season. These analyses suggest different impacts of different PM fractions by season, with a robust association between the coarse fraction and nonaccidental mortality in communities and periods affected by road dust. We recommend that PM10 monitoring networks be maintained in these communities to provide feedback for future dust mitigation programs.

Implications: There was a significant association between daily concentrations of the coarse fraction and nonaccidental mortality during the road dust season, even after adjustment for the fine fraction. The acute and chronic health effects associated with exposure to the coarse fraction remain unclear, which supports the maintenance of PM10 monitoring networks to allow for further research in communities affected by sources such as road dust.  相似文献   


15.
The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996–1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January–June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m−3, the Saharan dust accounts for 4–7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m−3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m−3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10–23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.  相似文献   

16.
Data on mass-levels of PM10 measured at regional background sites across the Mediterranean Basin, available from Airbase (European Environmental Agency) and from a few aerosol research sites, are compiled. PM10 levels increase from north to south and west to east of the Basin. These variations are roughly coincident with the PM10 African mineral dust load. However, when subtracting the African dust from mean PM10 levels using a consistent methodology, the PM10 background levels are still 5–10 μg m?3 higher in the Eastern Basin (EMB) when compared with those in the Western (WMB), mainly due to the higher anthropogenic and sea spray loads.As regards for the seasonal trends, these are largely driven by the occurrence of African dust events, resulting in a spring-early summer maximum over the EMB, and a clear summer maximum in the WMB, although in this later region the recirculations of aged air masses play an important role. Furthermore, a marked seasonal trend is still evident when subtracting the African dust load. This is characterised by a high summer maximum (driven by low precipitation, high insolation) and a winter minimum (intense synoptic winds).Important inter-annual variations in the dust contribution are detected, more evident in the southern sites. These differences are generally associated with the occurrence of extreme dust events. Generally, the years with higher dust contributions over the EMB correspond with lower contributions over the WMB, and vice versa.The characterization of individual particles, collected in both basins during African dust events, by scanning electron microscopy reveals only slight differences between them. This fact probably reflects the high degree of mixture of mineral dust from different sources before the transport towards the receptor sites.  相似文献   

17.
Over a twelve year period from 1996 to 2007, 76 dust storm related events (as days) in Hong Kong were selected for study, based on Aluminium and Calcium concentrations in PM10. Four of the 76 events reach episodic levels with exceedances of the Hong Kong air quality standards. The purpose of the study is to identify and characterize dust sources impacting Hong Kong.Global distribution of aerosols in NASA’s daily aerosol index images from TOMS and OMI, are compared to plots generated by NRL(US)’s Navy Aerosol Analysis and Prediction System. Possible source areas are assigned by computing air parcel backward trajectories to Hong Kong using the NOAA HYSPLIT model. PM10 and elemental data are analyzed for crustal mass concentrations and element mass ratios.Our analysis reveals that 73 out of the 76 dust events (96%) involve non-East Asian sources-the Thar, Central/West Asian, Arabian and Sahara deserts (Saharan influence is found in 63 events), which are previously not known to affect Hong Kong. The Gobi desert is the most frequent origin of dust, affecting 68 dust events while the Taklamakan desert impacts only 30 of the dust events. The impact of the Gobi desert in March and December is apparently associated with the northeast monsoon in East Asia.Our results also show a seasonal pattern in dust impact from both East Asian and more remote sources, with a maximum in March. Dust event occurrences are conspicuously absent from summer. Dust transport to Hong Kong is commonly associated with the passage of frontal low-pressure systems.The coarse size fraction of PM10 concentrations were, as indicated by Al, Ca and Fe concentrations, about 4–8 times higher during dust events. The mean Ca/Al ratios of sources involving the Taklamakan desert are notably higher than those for non-East Asian sources owing to a higher Ca content of most of the East Asian deserts. The Fe/Al ratios follow a similar trend.Contributions from the desert sources are grossly estimated where possible, by using the average Al abundance of 8% in the upper continental crust to convert the Al mass in the PM10 to dust concentrations. This is done for the six events identified with air mass purely of non-East Asian origin and the two events related only to the Thar/Arabian/Sahara deserts. Results reveal that the average contribution from the non-East Asian sources (including C/W Asia) is approximately 10% and, that from the Thar/Arabian/Sahara deserts is about 8%.  相似文献   

18.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

19.
20.
A model for the emission of PM10 dust has been constructed using the concept of a threshold friction velocity which is dependent on surface roughness. Surface roughness in turn was correlated with geomorphology or soil properties for Kuwait, Iraq, part of Syria, Saudi Arabia, the United Arab Emirates and Oman. The PM10 emission algorithm was incorporated into a Lagrangian transport and dispersion model. PM10 air concentrations were computed from August 1990 through August 1991. The model predicted about the right number of dust events over Kuwait (events occur 18% of the time). The model results agreed quantitatively with measurements at four locations in Saudi Arabia and one in Kuwait for one major dust event (>1000 μg/m3). However, for smaller scale dust events (200–1000 μg/m3), especially at the coastal sampling locations, the model substantially over-predicted the air concentrations. Part of the over-prediction was attributed to the entrainment of dust-free air by the sea breeze, a flow feature not represented by the large-scale gridded meteorological data fields used in the model computation. Another part of the over-prediction was the model's strong sensitivity to threshold friction velocity and the surface soil texture coefficient (the soil emission factor), and the difficulty in accurately representing these parameters in the model. A comparison of the model predicted PM10 spatial pattern with the TOMS satellite aerosol index (AI) yielded a spatial pattern covering a major portion of Saudi Arabia that was quite similar to the observed AI pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号