首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop a new and efficient approach for high dimensional atmospheric aerosol thermodynamic equilibrium predictions. The multi-phase and multi-component aerosol thermodynamic input–output systems are solved by the high dimensional model representation (HDMR) method combining with the moving multiple cut points. The developed approach improves the accuracy of numerical simulations for the general high dimensional input–output systems compared with the standard cut-HDMR method. It can simulate efficiently the atmospheric aerosol thermodynamic equilibrium problems in a large range of aerosol concentrations from 10?10 to 10?6 mol m?3. Numerical experiments show that the approach has great computational efficiency and the CPU-time of the approach is much less than that of ISORROPIA. The method does excellent performance in predicting high dimensional aerosol thermodynamic components as well as particulate matters (PMs).  相似文献   

2.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

3.
ABSTRACT

Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelom-eter; agreement was within 20% in every case.  相似文献   

4.
Wintertime atmospheric light scattering in Dallas, TX, was estimated through the use of aerosol models. Input data for the aerosol models were provided by measurements of aerosol chemistry, physical particle size distributions, and distributions of particulate sulfur by particle size, and by predictions by an atmospheric simulation model. Light scattering measurements provided a basis for testing the aerosol models. The SCAPE thermodynamic equilibrium model was used to estimate the amount of liquid water associated with particles and the ELSIE Mie scattering model was applied to estimate the resulting light scattering. The calculations were based on aerosol properties measured in Dallas during December 1994 and February 1995, and changes in scattering due to hypothetical changes in the aerosol were predicted. The predicted light scattering was compared to scattering measured by an Optec nephelometer; agreement was within 20% in every case.  相似文献   

5.
The accuracy and efficiency of the sectional multicomponent aerosol model SEMA, described in the first part of this paper, are tested. Comparisons of results of an equilibrium version of SEMA with results of the equilibrium models SEQUILIB and AIM show good agreement for relative humidities above 60% and thus validate the thermodynamic portion of the model. Tests of the dynamic portion of SEMA show the reliability of the model down to a minimum number of four sections. The results of a model application give evidence that kinetic limitations may be important in the formation of secondary aerosol species by condensation of sulphuric acid, nitric acid, and ammonia on sea salt aerosol. The concentrations of the chemical components of marine aerosol may be substantially different from their thermodynamic equilibrium concentrations in the polluted coastal atmosphere.  相似文献   

6.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   

7.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   

8.
The effect of ambient relative humidity (RH) on hourly particulate matter (PM10) readings of beta-gauge monitors has been studied using two collocated monitors in the field. The inlet air of monitor 1 was conditioned with water vapor to increase its RH, whereas monitor 2 operated normally in ambient conditions. Experimental data showed that PM10 readings of monitor 1 were nearly the same as monitor 2, as long as the RH of its conditioned incoming air did not exceed approximately 80-85%. However, when the RH exceeded approximately 80-85%, PM10 readings of monitor 1 became higher than monitor 2, and the difference increased with increasing RH. The measurement of pressure drop across the filter was also conducted, and the data revealed that the increase of pressure drop per unit of PM10 concentration decreased when RH was higher than approximately 80-85%, as compared with the case when RH was lower than 80-85%. This is perhaps because of more porous structure of deposited particles in the beta-gauge monitor when RH is greater than approximately 80-85%. The theoretical calculation using an evaporation model and a thermodynamic model has been conducted to simulate the beta-gauge readings. The results show that the theoretical PM10 concentrations using the evaporation model are in better agreement with the actual beta-gauge readings than those using the thermodynamic equilibrium model.  相似文献   

9.
Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 degrees C, 40 degrees C and 60 degrees C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 degrees C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 degrees C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.  相似文献   

10.
Condensable vapours such as sulphuric acid form aerosol in the atmosphere by the competing mechanisms of condensation on existing aerosol and the nucleation of new aerosol. Observational and theoretical evidence for the relative magnitudes of the competing processes is reviewed, and a number of general conclusions are made. Condensation is sensitive to the sticking probability of sulphuric acid molecules on aerosol particles, but there is now good evidence that it should be close to unity. In this case, equilibration timescales between acid vapour and the aerosol in most of the atmosphere are of the order of minutes or less, so that the acid concentration on such timescales given simply by the production rate times the equilibration time. When the acid concentration exceeds a threshold, nucleation will occur. The atmospheric aerosol therefore follows a history of initial formation in a nucleation burst followed by growth and coagulation with final removal by precipitation. This leads to the inverse correlation between aerosol number concentration and mass concentration found by Clarke (1992. Journal of Atmospheric Chemistry 14, 479–488) in the free troposphere. Binary homogeneous nucleation of sulphuric acid/water droplets, for which various simplified rates are compared, may dominate in such regions, but other mechanisms are possible elsewhere. A detailed analysis is performed of the number concentrations, removal rates, and masses of the components of the different types of global aerosols proposed empirically by Jaenicke (1993. Tropospheric Aerosols, Aerosol-Cloud-Climate Interaction. Academic Press, New York). There is a striking correlation between number concentrations in the nucleation and accumulation modes; and the giant aerosol mode, which if it is present dominates the mass, has little effect on the gas-to-particle conversion process. The mass of the atmospheric aerosol is therefore uncorrelated with the magnitude of molecular aerosol removal by condensation.  相似文献   

11.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

12.
An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.  相似文献   

13.
Spaceborne sensors allow near-continuous aerosol monitoring throughout the world. This paper illustrates the fusion of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and TOMS satellite data with surface observations and topographic data during four extreme aerosol events: (1) the April 1998 Asian dust storm that impacted the west coast of North America, (2) the May 1998 Central American forest fire smoke that impacted eastern North America, (3) the intense fall 1999 northern California fires, and (4) the massive February 2000 Sahara dust storm. During these dust and smoke events, the aerosol was visualized on true color SeaWiFS images as a distinct yellowish dye, the result of the aerosol increasing the reflectance of darker surfaces (ocean and land) and decreasing the reflectance of clouds. TOMS imagery also indicated increased aerosol absorption in the affected areas, while surface monitors measured major reductions in visual range. Fusing these data aids in the determination of the aerosol's spatial, temporal, and optical properties and provides supporting evidence for characterizing what is being visualized as dust or smoke. A 3-dimensional perspective of the events is obtained when incorporating topographic data and provides insight into the vertical properties of the aerosol plumes.  相似文献   

14.
15.
The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80–220 nm in diameter evaporated in purified air in a laminar flow reactor under temperatures of 20–27°C and relative humidities in the vicinity of 10%. The evaporation rates were calculated by comparing the initial and final size distributions. A theoretical expression of the evaporation rate incorporating the Kelvin effect and the effect of relative humidity on the equilibrium constant is developed. The measurements were consistent with the theoretical predictions but there was evidence of a small kinetic resistance to the mass transfer rate. The discrepancy can be explained by a mass accommodation coefficient ranging from 0.8 to 0.5 as temperature increases from 20–27°C. The corresponding timescale of evaporation for submicron NH4NO3 particles in the atmosphere is of the order of a few seconds to 20 min.  相似文献   

16.
ABSTRACT

Spaceborne sensors allow near-continuous aerosol monitoring throughout the world. This paper illustrates the fusion of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and TOMS satellite data with surface observations and topographic data during four extreme aerosol events: (1) the April 1998 Asian dust storm that impacted the west coast of North America, (2) the May 1998 Central American forest fire smoke that impacted eastern North America, (3) the intense fall 1999 northern California fires, and (4) the massive February 2000 Sahara dust storm. During these dust and smoke events, the aerosol was visualized on true color SeaWiFS images as a distinct yellowish dye, the result of the aerosol increasing the reflectance of darker surfaces (ocean and land) and decreasing the reflectance of clouds. TOMS imagery also indicated increased aerosol absorption in the affected areas, while surface monitors measured major reductions in visual range. Fusing these data aids in the determination of the aerosol's spatial, temporal, and optical properties and provides supporting evidence for characterizing what is being visualized as dust or smoke. A 3-dimensional perspective of the events is obtained when incorporating topographic data and provides insight into the vertical properties of the aerosol plumes.  相似文献   

17.
A chemical equilibrium code was improved and used to show that calcium and magnesium have a large yet different effect on the aerosol size distribution in different regions of Los Angeles. In the code, a new technique of solving individual equilibrium equations was developed. The technique, the analytical equilibrium iteration (AEI) method, gives the same solutions (to at least 7 decimal places) as the previous technique used, the mass-flux iteration (MFI) method, but consumes 13–48 times less computer time. The model was also updated to include treatment of potassium, calcium, magnesium, and carbonate. Previously, it treated only nitrate, ammonium, chloride, sulfate, and sodium. Predictions from the updated code, EQUISOLV II, were compared with data from an eight-stage Berner impactor at Long Beach, Claremont, and Riverside during the Southern California Air Quality Study. When any equilibrium solver is applied between the gas phase and multiple aerosol size bins, unique solutions are possible only when solids (e.g., NH4NO3) that form from two gas-phase species are absent. For this study, unique solutions were possible only when the relative humidity exceeded 62%, and only cases in this regime are discussed. Base-case predictions of nitrate and ammonium matched observations well in most size bins of every case. When Ca and Mg were removed from calculations, coarse-mode nitrate decreased at Long Beach, as expected, to maintain charge balance. At Riverside, removing Ca and Mg had the opposite effect, increasing coarse-mode nitrate, shifting it from the accumulation mode. The reason is explained in terms of mean mixed activity coefficients. At Claremont, the charge-balance and activity-coefficient effects nearly canceled each other.  相似文献   

18.
A mathematical model was developed to evaluate HNO3 artifact of the annular denuder system due to evaporation and diffusional deposition of nitrate-containing aerosols. The model performance was validated by comparing its numerical solutions with laboratory and numerical data available in the literature for evaporation and diffusional deposition of monodisperse and polydisperse NH4NO3 aerosols. Measurement artifacts were evaluated by varying typical sampling ranges of ambient temperature, HNO3 gas concentration, aerosol number concentration, aerosol mass median diameter, and nitrate mass fraction of <2.5 μm aerosols to see their respective effects. Potential application of the present model on estimating HNO3 artifacts was demonstrated using literature data sampled in USA, Taiwan, Netherlands, Korea and Japan. Significant measurement artifact could be found in Taiwan and Netherlands due either to low HNO3 gas concentration and high nitrate concentration in <2.5 μm aerosols or to high ambient temperature.  相似文献   

19.
The water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process.  相似文献   

20.
A size-resolved equilibrium model, SELIQUID, is presented and used to simulate the size–composition distribution of semi-volatile inorganic aerosol in an urban environment. The model uses the efflorescence branch of aerosol behavior to predict the equilibrium partitioning of the aerosol components between the gas phase and a size-resolved aerosol population over the entire RH domain. Predictions of SELIQUID are compared against size-resolved composition measurements at different locations during the Southern California Air Quality Study. Based on the modeling results, the size distribution of sub-micrometer nitrate and ammonium can be determined by thermodynamic equilibrium when the RH>60%. In cases where the RH<60%, the assumption that all aerosol particles are metastable liquid solutions may introduce unacceptable errors. On the other hand, the equilibrium assumption, in some cases at least, introduces errors in the calculation of the coarse (particles with diameter >1 μm or so) nitrate and ammonium that increase with particle size. Finally, the inclusion of crustal species is important in modeling the size distribution of coarse inorganic aerosols when the concentration of these species is high. The effect of these crustal species can be complex and counterintuitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号