首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The updated SAPRC-07 mechanism was evaluated against data from experiments performed in the CSIRO smog chamber. The mechanism predictions have been compared to experimental results as well as predictions by SAPRC-99.Experiments were performed using either toluene or m-xylene in the presence of NOx at sub-0.1 ppmv concentrations. For the majority of m-xylene experiments, the modelled Δ(O3–NO) concentration was within 20% of observed values for both SAPRC mechanisms. However during the oxidation of toluene the production of radicals was poorly predicted, with final Δ(O3–NO) concentration under-predicted by up to 60%. The predictions of major oxidants from isoprene oxidation were in good agreement with observed values. For the NOx-limited conditions however, the ozone concentration predicted by both mechanisms were under-predicted by approximately 20% in the five experiments tested.The performance of the SAPRC-07 mechanism was also evaluated against twelve evaporated fuel experiments. Two types of evaporative mode experiments were performed: headspace evaporated fuel and wholly evaporated fuel. The major difference was a significantly higher concentration of aromatic hydrocarbons and larger alkane products in wholly evaporated fuels. For headspace evaporated fuel experiments both SAPRC mechanisms were in good agreement with experimental results. For wholly evaporated experiments the average Δ(O3–NO) model error was ?25% with SAPRC-07 compared to less than ?5% for SAPRC-99. Updates to the photolysis data for dicarbonyls, the light source used and the experimental conditions under which these experiments were performed are possible causes for the discrepancy between SAPRC-99 and -07 predictions for wholly evaporated experiments.  相似文献   

2.
ABSTRACT

Ozone reactivity scales play an important role in selecting which chemical compounds are used in products ranging from gasoline to pesticides to hairspray in California, across the United States and around the world. The California Statewide Air Pollution Research Center (SAPRC) box model that calculates ozone reactivity uses a representative urban atmosphere to predict how much additional ozone forms for each kilogram of compound emission. This representative urban atmosphere has remained constant since 1988, even though more than 25 years of emissions controls have greatly reduced ambient ozone concentrations across the United States during this time period. Here we explore the effects of updating the representative urban atmosphere used for ozone reactivity calculations from 1988 to 2010 conditions by updating the meteorology, emission rates, concentration of initial conditions, concentration of background species, and composition of volatile organic compound (VOC) profiles. Box model scenarios are explored for 39 cities across the United States to calculate the Maximum Incremental Reactivity (MIR) scale for 1,233 individual compounds and compound-mixtures. Median MIR values across the cities decreased by approximately 20.3% when model conditions were updated. The decrease is primarily due to changes in atmospheric composition ultimately attributable to emissions control programs between 1998 and 2010. Further effects were caused by changes in meteorological variables stemming from shifting seasons for peak ozone events (summer versus early fall). Lumped model species with the highest MIR values in 1988 experienced the greatest decrease in MIR values when conditions were updated to 2010. Despite the reduction in the absolute reactivity in the updated 2010 atmosphere, the relative ranking of the VOCs according to their reactivity did not change strongly compared to the original 1988 atmosphere. These findings indicate that past decisions about ozone control programs remain valid today, and the ozone reactivity scale continues to provide relevant guidance for future policy decisions even as new products are developed.

Implications: Updating the representative urban atmosphere used for the Maximum Incremental Reactivity (MIR) scale from 1988 to 2010 conditions caused the reactivity of 1223 individual compounds and combined mixtures to decrease by an average of 20.3% but the relative ranking of the VOCs was not strongly affected. This means that previous guidance about preferred chemical formulations to reduce ozone formation in cities across the United States remain valid today, and the MIR scale continues to provide relevant guidance for future policy decisions even as new products are developed.  相似文献   

3.
An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment. Therefore, additional study is required to evaluate the full regulatory implications of upgrading air quality models to SAPRC07.  相似文献   

4.
The photooxidation of fuel vapour was investigated in a smog chamber and simulated using three chemical mechanisms, the Master Chemical Mechanism (MCMv3.1), SAPRC-99 and the Carbon Bond chemical mechanism (CB05). Three varieties of fuel were used, unleaded petrol (ULP) and two ULP-ethanol blends which contained 5% and 10% ethanol (E5, E10). The fuel vapours were introduced into the chamber using two methods, by injecting the vapours from wholly evaporated fuel directly, and by injecting the headspace vapour from fuel equilibrated at 38 °C. The chamber experiments were simulated using the selected mechanisms and comparisons made with collected experimental data.The SAPRC-99 mechanism reproduced Δ(O3–NO) more accurately for almost all fuel types and injection modes, with negligible model error for both injection modes. The average model error for MCM simulations was ?16% and for CB05 the average model error was ?34%. The predictions for the CB05 mechanism varied depending on injection mode, the Δ(O3–NO) model error for wholly evaporated experiments was ?44%, compared to ?24% for headspace vapour experiments. The difference in aromatic content between experiments of different injection modes was likely to be the cause of the difference in model error for CB05. The model error for all headspace experiments was dependent upon the initial carbon monoxide concentrations.The results for Δ(O3–NO) were matched by the prediction of other key products, with formaldehyde predicted to within 20% by both SAPRC and the MCM. The addition of ethanol to the base SAPRC mechanism altered the predictions of Δ(O3–NO) by less than 2%. Changes observed in the concentrations of formaldehyde and acetaldehyde were consistent with the expected yields from ethanol oxidation.  相似文献   

5.
A series of experiments performed at the GM chamber facility provided useful data for the evaluation of two current chemical mechanisms used in airshed models (SAPRC97 and SAPRC93 mechanisms) and a test of their predictions of maximum incremental reactivities which describe the change in ozone caused by adding a small amount of a compound to a polluted urban mixture under high-NOx conditions. In general, the SAPRC97 detailed mechanism performed well in simulating the volatile organic compound (VOC) reactivity experiments for most test species; however, it had a tendency to underpredict incremental reactivities. For base-case runs containing a nine-component urban-surrogate mixture under high-NOx conditions, where maximum concentrations of either O3 or the smog produced (SP=the initial NO oxidized plus the ozone produced) were not attained during a 12-h irradiation, the SAPRC97 performed well while the SAPRC93 underestimated SP or O3 significantly. Under low-NOx conditions where SP or O3 maximums were attained, the SAPRC97 as well as the SAPRC93 underpredicted SP or O3 for runs containing the urban-surrogate mixture. Simulations of incremental reactivity experiments and special chamber runs showed that the SAPRC97 mechanism performed poorly for n-octane and some aromatic isomers such as ethylbenzene and p-xylene, while it performed well for other aromatic isomers such as toluene, m-xylene and 1,3,5-trimethylbenzene. Although, additional chamber data for aromatic isomers is needed to further clarify the parameterized chemical mechanisms for aromatic isomers, the newer SAPRC97 mechanism appears to be much improved over the older SAPRC93 mechanism for simulating aromatic chemistry.  相似文献   

6.
A new state-of-the-art indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosol (SOA) has been constructed and characterized. The chamber is designed for atmospheric chemical mechanism evaluation at low reactant concentrations under well-controlled environmental conditions. It consists of two collapsible 90 m3 FEP Teflon film reactors on pressure-controlled moveable frameworks inside a temperature-controlled enclosure flushed with purified air. Solar radiation is simulated with either a 200 kW Argon arc lamp or multiple blacklamps. Results of initial characterization experiments, all carried out at 300–305 K under dry conditions, concerning NOx and formaldehyde offgasing, radical sources, particle loss rates, and background PM formation are described. Results of initial single organic–NOx and simplified ambient surrogate–NOx experiments to demonstrate the utility of the facility for mechanism evaluation under low NOx conditions are summarized and compared with the predictions of the SAPRC-99 chemical mechanism. Overall, the results of the initial characterization and evaluation indicate that this new environmental chamber can provide high quality mechanism evaluation data for experiments with NOx levels as low as 2 ppb, though the results indicate some problems with the gas-phase mechanism that need further study. Initial evaluation experiments for SOA formation, also carried out under dry conditions, indicate that the chamber can provide high quality secondary aerosol formation data at relatively low hydrocarbon concentrations.  相似文献   

7.
ABSTRACT

To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge.

The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

8.
Non-methane volatile organic compounds (VOCs) emitted from boreal peatland microcosms were semiquantitatively determined using gas chromatography–mass spectrometry techniques in a growth chamber experiment. Furthermore, effects of vegetation composition and different ozone concentrations on these emissions were estimated by multivariate data analyses. The study concentrated on the less-studied VOCs, and isoprene was not analyzed. The analyses suggest that a sedge Eriophorum vaginatum is associated with emissions of the four most-emitted VOC groups (cyclic, aromatic, carbonyl and aliphatic hydrocarbon compounds) and also with VOCs emitted in smaller amounts (terpenoids and N-containing compounds). A woody dwarf shrub Andromeda polifolia was strongly associated with emissions of aromatic, carbonyl and terpenoid compounds. Results suggest that exposure to an ozone concentration of 150 ppb leads to an increased emission of most VOC groups. Emission of aromatic compounds seems to increase linearly with increasing ozone concentration. These observations indicate that peatlands may be a source of a vast range of volatile compounds to the atmosphere. For more accurate assessment of the impact of elevated tropospheric ozone on the terpenoid and non-terpenoid VOC emissions from peatlands, well-replicated open-air ozone-exposure experiments should be conducted.  相似文献   

9.
California has adopted a set of VOC reactivity factors for regulatory purposes that is based on a model of the ozone formation process. These incremental reactivity factors (derived by Carter) describe the amount of ozone each exhaust VOC will form under a certain set of conditions in an urban atmosphere. The main objective of this study is to measure reactivity factors using smog chamber experiments, and to compare the measurements to the Carter factors. A new facility was constructed explicitly for this study. The facility has four identical smog chambers and a temperature-controlled enclosure for the chambers. The chambers are irradiated using a set of filtered xenon arc lamps to approximate “sunlight”. The reactivities of 14 individual VOCs representative of those found in automobile exhaust and several mixtures of VOCs have been measured. The measured and Carter-reactivity factors were highly correlated, suggesting that the chemical model used by Carter accounts for the reactivities of a wide range of compounds with dramatically different uncertainties in their mechanisms. The measured results, in general, are consistent with the Carter-reactivity factors for comparing the relative reactivities of VOCs in the atmosphere. However, additional kinetic and mechanistic studies of many VOC species including aromatic isomers are needed to improve reactivity scales.  相似文献   

10.
To test the possible use of composted food waste and wastewater sludge as biofilters to treat gas-phase volatile organic compounds (VOCs), batch experiments were conducted with an isolated strain that could degrade aromatic compounds under aerobic conditions. A benzene and trichloroethylene (TCE) mixture was used as the gas-phase pollutant in experiments with composted food waste, sludge, and soil. Under aerobic conditions, benzene was degraded as a primary substrate and TCE was degraded cometabolically, with water contents varying from 6 to 60% (volume of water added/volume of solid). Optimal water content for VOC removal was 12% for the soil, 36% for the composted food waste, and 48% for the sludge. The extent of VOC sorption and biodegradation at the optimal water content was different for each material. With the same initial VOC concentration, more VOCs were removed by sorption onto the composted food waste and the sludge, while less VOCs were biodegraded in comparison with the results using soil. The reason the biodegradation in the soil was greater may be partly attributed to the fact that, due to less sorption, the aqueous-phase concentration of VOCs, which microorganisms could utilize as a carbon source or cometabolize, was higher. We also speculate that the distribution of microorganisms in each medium affects the rate of biodegradation. A large number of microorganisms were attached to the composted food waste and sludge. Mass transfer of VOCs and oxygen to these microorganisms, which appear to have been heterogeneously distributed in clusters, may have been limited, resulting in hindered biodegradation.  相似文献   

11.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

12.
Volatile organic compounds (VOCs) were measured from 2007 to 2010 at the center of Shanghai, China. Because VOCs are important precursors for ozone photochemical formation, detailed information of VOC sources needs to be investigated. The results show that the measured VOC concentrations in Shanghai are dominated by alkanes (43%) and aromatics (30%), following by halo-hydrocarbons (14%) and alkenes (6%). Based on the measured VOC concentrations, a receptor model (PMF; positive matrix factorization) coupled with the information related to VOC sources (the distribution of major industrial complex, meteorological conditions, etc.) is applied to identify the major VOC sources in Shanghai. The result shows that seven major VOC sources are identified by the PMF method, including (1) vehicle related source which contributes to 25% of the measured VOC concentrations, (2) solvent based industrial source to 17%, (3) fuel evaporation to 15%, (4) paint solvent usage to 15%, (5) steel related industrial production to 12%, (6) biomass/biofuel burning to 9%, and (7) coal burning to 7%. Furthermore, ozone formation potential related to VOC sources is calculated by the MIR (maximum incremental reactivity) technique. The most significant VOC source for ozone formation potential is solvent based industrial sources (27%), paint solvent usage (24%), vehicle related emissions (17%), steel related industrial productions (14%), fuel evaporations (9%), coal burning (6%), and biomass/biofuel burning (3%). The weekend effect on the VOC concentrations shows that VOC concentrations are generally higher in the weekdays than in the weekends at the sampling site, suggesting that traffic conditions and human activities have important impacts on the VOC emissions in Shanghai.  相似文献   

13.
VOCs are important precursors of the atmospheric ozone formation species. This study investigated the airborne concentrations of 52 VOCs at two air quality monitoring stations, Daliao and Tzouying, during wintertime in southern Taiwan. Airborne VOCs samples were taken in stainless steel canisters four times per day and analyzed via gas chromatography/mass spectrometry. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential in this ozone non-attainment region. Toluene, propane, isopentane, propene, n-butane, n-pentane and isoprene contributed 78–79% of the 52 VOCs in Daliao. Toluene, 1-butene, isopentane, propene, propane, n-undecane, and n-butane contributed 71–77% of the 52 VOCs in Tzouying. The VOCs concentrations were higher in Daliao due to the high toluene emissions from a paint plant and a solvent plant in the nearby industrial district. The 24-h VOC concentrations averaged 25 ppb higher in Tzouying than in Daliao. The ozone formation potential of airborne VOCs was 1687–2730 and 1717–2261 μg-O3/g-VOCs in Daliao and Tzouying, respectively. Ozone concentrations in Tzouying were 44 ppb higher than in Daliao during the 1200–1600 sampling period.  相似文献   

14.
Abstract

Consumer products are potentially significant sources of volatile organic compounds (VOCs), which are precursors to the formation of ozone in photochemical smog. To address the problem of ozone formation in ambient air, the U.S. Environmental Protection Agency (EPA) has been involved in the development of test methods for measuring the VOC content of consumer products. This paper describes results of an interlaboratory study to estimate the repeatability (precision of analyses performed by a single laboratory) and reproducibility (precision of analyses performed by different laboratories) of the consumer products’ VOC measurement method based on EPA Method 24 (for VOCs in surface coatings).

The mean method repeatability was 2.7 wt % VOC, and the mean method reproducibility was 4.8 wt % VOC. Method repeatability ranged from 0.2 to 4.4 wt % VOC, and reproducibility ranged from 0.6 to 11.9 weight percent VOC. The precision of the VOC method for consumer

products is similar to the precision of EPA Method 24 for surface coatings.  相似文献   

15.
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.

Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking.  相似文献   


16.
The development of a condensed version of the SAPRC-07 mechanism, designated CS07A, is described. It is comparable in size to CB05 and was derived directly from detailed SAPRC-07, which serves as the basis for its predictive capability and evaluation against chamber data. It incorporates the more condensed and approximate peroxy radical lumped operator method employed in SAPRC-99, and condensations involving removing or lumping less reactive compounds, lumping some product species in isoprene or aromatic mechanisms with other species with similar mechanisms using reactivity weighting, removing some compounds and reactions that are rapidly reversed, and using fewer model species to represent emitted alkanes and similar species. It gives predictions of O3, total PANs and OH radicals that are very close to the standard SAPRC-07 mechanism for airshed models used as the starting point, but predicts about 15% more H2O2. Use of CS07A is suitable for models where the priority is O3 formation, while the less condensed version should be used if more accurate hydroperoxide predictions are a priority.  相似文献   

17.
Abstract

In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA’s “bright-line” test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

18.
Condensed atmospheric photooxidation mechanisms for isoprene   总被引:1,自引:0,他引:1  
Two condensed mechanisms for the atmospheric reactions of isoprene, which differ in the number of species used to represent isoprene's reactive products, have been developed for use in ambient air quality modehng. They are based on a detailed isoprene mechanism that has recently been developed and extensively evaluated against environmental chamber data. The new condensed mechanisms give very close predictions to those of the detailed mechanism for ozone, OH radicals, nitric acid, H2O2, formaldehyde, total PANS, and for incremental effects of isoprene on ozone formation in one day simulations. The effects of the condensations become somewhat greater in multi-day simulations, particularly in cases where NO3 reactions are important at nighttime, but the ozone predictions are still very close. On the other hand, the SAPRC-90, RADM-2, and Carbon Bond IV isoprene mechanisms give quite different predictions of these quantities. It is recommended that the new mechanisms replace those currently used in airshed simulations where isoprene emissions are important.  相似文献   

19.
In an earlier paper the ozone-forming potential of n-propyl bromide (NPB) was studied with a new methodology designed to address issues associated with a marginal smog-forming compound. However, the U.S. Environmental Protection Agency (EPA) subsequently revised its policy and now recommends using the Maximum Incremental Reactivity (MIR) scale to rank the ozone-forming potential of all volatile organic compounds (VOCs), including those of marginal ozone productivity. Nevertheless, EPA contemplated exceptions to the box-model-derived MIR scale by allowing use of photochemical grid-model simulations for case specific reactivity assessments. The California Air Resources Board (CARB) also uses the MIR scale and CARB has a Reactivity Scientific Advisory Committee that can consider exceptions to the MIR scale. In this study, grid-model simulations that were recommended by EPA are used to evaluate the incremental ozone impacts of NPB using an update to the chemical mechanism developed in an earlier paper. New methods of analysis of the grid-model output are further developed here to quantify the relative reactivities between NPB and ethane over a wide range of conditions. The new grid-model-based analyses show that NPB is significantly different and generally less in ozone-forming potential (i.e., reactivity) than predicted by the box-model-based MIR scale relative to ethane, EPA's "bright-line" test for non-VOC status. Although NPB has low reactivity compared to typical VOCs on any scale, the new grid-model analyses developed here show that NPB is far less reactive (and even has negative reactivity) compared to the reactivity predicted by the MIR scale.  相似文献   

20.
A detailed gas-phase photochemical chamber box model, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for the model anthropogenic aromatic compound 1,3,5-trimethylbenzene, has been used to simulate data measured during a series of aerosol chamber experiments in order to evaluate the mechanism under a variety of VOC/NOx conditions.The chamber model was used in the interpretation of comprehensive high (mass and time) resolution measurements of 1,3,5-trimethylbenzene and its photo-oxidation products recorded by a Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). Supporting gas and aerosol measurements have also enabled us to explore the ‘missing link’ between the gas and aerosol phases. Model-measurement comparisons have been used to gain insight into the complex array of oxygenated products formed, including the peroxide bicyclic ring opening products (α,β-unsaturated-γ-dicarbonyls and furanones) and the O2-bridged peroxide bicyclic ring-retaining products. To our knowledge this is the first time such high molecular weight species, corresponding to various peroxide bicyclic products represented in the MCMv3.1, have been observed in the gas-phase. The model was also used to give insight into which gas-phase species were participating in SOA formation, with the primary and secondary peroxide products, formed primarily under low NOx conditions, identified as likely candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号