首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of surfactant alkyl chain length on soil Cd desorption was studied using nonionic surfactants of polyethylene oxide (PEO) of PEO chain lengths of 7.5 (Triton X-114), 9.5 (Triton X-100), 30 (Triton X-305), or 40 units (Triton X-405) in combination with the I- ligand. Triplicate 1 g soil samples were equilibrated with 15 ml of surfactant-ligand mixture, at concentrations of 0.025, 0.50 or 0.10, and 0.0, 0.168 or 0.336 mol/l, respectively. After shaking the samples for 24 h, the supernatant fraction was analyzed for Cd content to determine the percent of Cd desorbed from the soil. After five successive washings, 53%, 40% and 25% of Cd had been desorbed by 0.025, 0.050 or 0.10 mol/l of Triton X-114, respectively, in the presence of 0.336 mol/l of I-, whereas with the same conditions, Triton X-100 desorbed 61%, 57% and 56% Cd and either Triton X-305 or Triton X-405 desorbed 51, 40 and 14 to 16% Cd. The most efficient Cd desorption was obtained using 0.025 mol/l Triton X-100 in admixture with 0.336 mol/l I-. Increased surfactant concentration was detrimental to Cd desorption consistent with a process that blocked ligand access to the soil particle surface. After 5 washings,the cumulative cadmium desorption decreased with increasing surfactant alkyl chain length, indicating that the metal-ligand complexes are preferably stabilized by the micelles' hydrophobic octyl phenyl (OP) group rather than by the hydrophilic PEO group. In the absence of ligand, the surfactants alone desorbed less than 1% Cd from the contaminated soil, suggesting that the ligand, rather than the surfactant, extracts the metal, to be subsequently stabilized within the surfactant micelles.  相似文献   

2.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

3.
Sorption of organic contaminants to soils has been shown to limit bioavailability and biodegradation in some systems. Use of surfactants has been proposed to reverse this effect. In this study, the effects of a high organic carbon content soil and a nonionic surfactant (Triton X-100) on the reductive dechlorination of carbon tetrachloride (CCl4) were examined in anaerobic systems containing Shewanella putrefaciens. Although more than 70% of the added CCl4 was sorbed to the soil phase in these systems, the reductive dechlorination of CCl4 was not diminished. Rather, rates of CCl4 dechlorination in systems containing soil were enhanced relative to systems containing non-sorptive sand slurries. This enhancement was also observed in sterile soil slurries to which a chemical reductant, dithiothreitol was added. It appears that the organic soil used in these experiments contains some catalytic factor capable of transforming CCl4 in the presence of an appropriate chemical or microbial reductant. The addition of Triton X-100 to sand and soil slurries containing S. putrefaciens resulted in increased CCl4 degradation in both systems. The effect of Triton could not be explained by: (i) surfactant induced changes in the distribution of CCl4, (i.e. decreased sorption) or the rate of CCl4 desorption; (ii) a direct reaction between Triton and CCl4; or (iii) increased cell numbers resulting from use of the surfactant as a substrate. Rather, it appears that Triton X-100 addition resulted in lysis of bacterial cells, a release of biochemical reductant, and enhanced reductive transformation of CCl4. These results provide insights to guide the development of more effective direct or indirect bioremediation strategies.  相似文献   

4.
Degradation of toxaphene in water during anaerobic and aerobic conditions   总被引:3,自引:0,他引:3  
The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.  相似文献   

5.
Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L−1 added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment.  相似文献   

6.
A study was conducted to investigate whether cyclodextrins and surfactants can be used to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in contaminated sediments. Two sediment samples were extracted with aqueous solutions of hydroxypropyl-beta-cyclodextrin (HPCD) and Triton X-100. PAH removal during extraction was compared with PAH removal during biodegradation and solid-phase extraction. The latter two methods were used as reference methods to establish which part of the PAHs could be biodegraded and to what extent biodegradation was governed by bioavailability limitations. It was demonstrated that HPCD extraction followed solid-phase extraction and removed primarily readily bioavailable PAHs, while Triton X-100 extracted both readily and poorly bioavailable PAHs. Moreover, HPCD did not affect the degradation of PAHs in biodegradation experiments, while Triton X-100 enhanced the degradation of low molecular weight PAHs. It was concluded that HPCD extraction may provide a good method for the prediction of PAH bioavailability. Triton X-100 extraction is unfit for the prediction of PAH bioavailability.  相似文献   

7.
Toxaphene residues in cod liver and fish oil samples from different countries have been analyzed by HRGC-ECD and HRGC-MS as well as with multidimensional gas chromatography. The results have been compared to patterns obtained by photolysis and microbial degradation of selected single chlorobornanes and technical toxaphene. Enantiomeric ratios of the components Parlar #44 and #62 showed significant deviations from 1, indicating metabolism in cod fish and perhaps other species at least for some congeners. Parlar #50 was found to be a racemate, which corresponds to its known stability under biotic and abiotic conditions.  相似文献   

8.
Shoeib M  Brice KA  Hoff RM 《Chemosphere》2000,40(2):201-211
MDGC-ECD procedures have been used to provide insight into the compositional complexity of some of the specific peaks or clusters observed in the gas chromatographic analysis of a technical toxaphene standard, with reference to individual toxaphene congeners (Parlar # components) that are flow commercially available. These investigations have focussed initially upon those peaks and clusters recently identified (Shoeib. M., Brice, K.A., Hoff, R., 1999. Chemosphere 39, 849-871) as dominant constituents of background ambient air. Multiple electron-capturing components have been found to be present in all the species studied: the available individual toxaphene congeners have been matched against these components where possible. In similar fashion, the responses obtained in equivalent gas chromatographic elution windows from the analysis of typical processed air sample extracts have been investigated, with the results showing clear differences relative to the patterns found in the technical toxaphene standard. In most cases, the air sample shows reduced complexity with fewer components present in the cluster. Also, the presence of interfering responses (due to PCBs and other organochlorines) is quite apparent and significant, showing that major problems and errors could arise when using single-column GC-ECD procedures for quantitation of toxaphene in environmental samples. The presence of certain of the Parlar species in the air samples has been confirmed and in most cases these represent the dominant toxaphene component found in the targeted cluster. Furthermore, the persistence of certain congeners in the atmospheric samples appears to be strongly dependent upon chemical structure, since the congeners in question possess an alternating exo-endo chlorine substitution pattern around the six-membered ring in the bornane skeleton. Such persistence is probably the result of lower metabolization of toxaphene residues in soils, water and sediments leading to a similar pattern in the atmosphere following volatilization.  相似文献   

9.
Witte J  Büthe A  Ternes W 《Chemosphere》2000,41(4):529-539
A method for the congener-specific analysis of toxaphene in eggs of seabirds from a monitoring program from the northern part of Germany was carried out. The method was optimized in most steps of the procedure: injection temperature, HRGC with an HT-8 column, ion source temperature and the MS detection mode NCI/SIM measuring the isotope clusters of [M] , [M-Cl]-, [M-HCl]- and [M-2Cl]-. The suitability of 1,4-exo, 7,8,9,10,10-heptachloro-5-methoxytricyclo [5,2,1,0(2,6)]dec-3,8-diene as internal standard was demonstrated. 14 toxaphenes with Parlar numbers and more than 60 unknown toxaphenes could be identified. Spatial and temporal trends of toxaphene contamination are presented by using the Parlar 22 components standard for quantification.  相似文献   

10.
Fromberg A  Cederberg T  Hilbert G  Büchert A 《Chemosphere》2000,40(9-11):1227-1232
The levels of toxaphene congeners, in addition to PCB congeners and organochlorine pesticides, were determined in various fish samples from different Danish waters. While PCB-153 and p,p'-DDE show different levels depending on the fishing area, with highest levels in fish from the Western Baltic Sea, toxaphene was detected in all the samples investigated at a more constant level. The distribution of the three toxaphene congeners Parlar #26, #50 and #62 depends on the fishing area, with the Western Baltic Sea being different from the other waters by having almost equal levels of toxaphene congeners #26 and #50.  相似文献   

11.
Degradation of di-butyl-phthalate by soil bacteria   总被引:2,自引:0,他引:2  
Chao WL  Lin CM  Shiung II  Kuo YL 《Chemosphere》2006,63(8):1377-1383
Twelve Gram-positive phthalate ester degraders were isolated from soil. Using Biolog GP2 plates, eight of them were identified as belonging to the Corynebacterium-Mycobacterium-Nocardia group, while the remaining four were unidentifiable. When cultured in the presence of di-butyl-phthalate (DBP) in basal salts solution, five of these isolates accomplished more than 90% of DBP degradation within 48 h (fast group), three were placed in the medium group, and the remaining four were placed in the slow group which caused less than 30% of DBP degradation within the same period of time. A 420 bp DNA fragment was amplified from six isolates and none of them fell within the slow group. When compared with the large subunit of phthalate dioxygenase gene (phtA) of Arthrobacter keyseri, 83% and 91% similarities were evident in the nucleotide and amino acid sequences, respectively. However, no correlation between cell surface hydrophobicity and phthalate degradation ability was evident. Six surfactants (Brij 30, Brij 35, Tergitoltype NP-10, Triton N-101, Triton X-100 and SDS) were tested for their abilities to increase degradation rate. When added at the critical micellar concentration (CMC), they all displayed strong growth inhibition against the three bacteria tested, with Brij 30 been the least toxic to isolates G2 and G11, and Brij 35 had the least inhibitory effect for G1. When half the CMC of Brij 30 was incorporated into the basal salts, the inhibitory effect on DBP degradation remained. Soil helped to minimize surfactant toxicity of surfactant and increase the degradation potential of some of the test bacteria. When DBP-amended soil had been aged for three months, decreases in bioavailability were observed but the effect varied tremendously between different organisms. For isolates G1, G2, G5, G7 and G17 the aging effects were almost non-exist. The present study indicates that selection of a suitable degrader may minimize the undesired effect of aging on bioremediation process.  相似文献   

12.
Enhanced microbial degradation of toxaphene by natural microorganisms occurred in soil and sediment amended with organic matter kept under anaerobic (flooded) conditions. Laboratory experiments yielded a dissipation half-life of approximately 3 and 1 week for soil and sediment, respectively, containing 10 ppm of technical toxaphene and a 1% alfalfa meal amendment. Dissipation was accompanied by an increase in early eluting gas chromatographic peaks and a decrease in later eluting peaks, indicating that dechlorination had occurred. Enhanced anaerobic dissipation also took place in soil containing 500 ppm of toxaphene, although at a lesser rate than at 10 ppm, and when cotton gin waste was used as amendment in place of alfalfa meal. Sediment in a toxaphene-contaminated pesticide waste disposal ditch was amended with 10% steer manure and flooded to ascertain field utility of the technique for on-site decontamination. Toxaphene residues were reduced from 63 to 23 ppm in 120 days, and some degradation activity still occurred up to 8 months after this single treatment.  相似文献   

13.
Chan HM  Yeboah F 《Chemosphere》2000,41(4):507-515
Toxaphene is one of the major persistent organic pollutants with global environmental impacts. We have measured total toxaphene and specific congeners concentrations in 19 fish samples collected from the Yukon, Canada using gas chromatography coupled to ion trap MS/MS. The total toxaphene concentrations ranged from 42 to 242 ng/g (mean = 107+/-61 ng/g). The sum of the three specific congeners (Parlar 26, 50 and 62) was within 10-55 ng/g. The ratio of the sum of the three congeners to the total toxaphene varied between 8% and 25% in the fish samples but the ratio may be species specific. Our results suggest that consumption of these Yukon fish should have minimal risk of toxaphene exposure.  相似文献   

14.
Bioremediation of diesel-contaminated soil with composting   总被引:22,自引:0,他引:22  
The major objective of this research was to find the appropriate mix ratio of organic amendments for enhancing diesel oil degradation during contaminated soil composting. Sewage sludge or compost was added as an amendment for supplementing organic matter for composting of contaminated soil. The ratios of contaminated soil to organic amendments were 1:0.1, 1:0.3, 1:0.5, and 1:1 as wet weight basis. Target contaminant of this research was diesel oil, which was spiked at 10,000 mg/kg sample on a dry weight basis. The degradation of diesel oil was significantly enhanced by the addition of these organic amendments relative to straight soil. Degradation rates of total petroleum hydrocarbons (TPH) and n-alkanes were the greatest at the ratio of 1:0.5 of contaminated soil to organic amendments on wet weight basis. Preferential degradation of n-alkanes over TPH was observed regardless of the kind and the amount of organic amendments. The first order degradation constant of n-alkanes was about twice TPH degradation constant. Normal alkanes could be divided in two groups (C10-C15 versus C16-C20) based on the first order kinetic constant. Volatilization loss of TPH was only about 2% of initial TPH. Normal alkanes lost by volatilization were mainly by the compounds of C10 to C16. High correlations (r=0.80-0.86) were found among TPH degradation rate, amount of CO2 evolved, and dehydrogenase activity.  相似文献   

15.
The degradation of alpha and beta isomers of endosulphan and endosulphan sulphate in four sterilized and non sterilized Indian soils under laboratory conditions was studied. Degradation was found to be more in non-sterilized as compared to the sterilized soil. The half life of alpha-endosulphan, beta-endosulphan and endosulphan sulphate was found to be 136.8, 273 and 301 days in sterilized Alfisol and 55, 256 and 277 days in non-sterilized Alfisol,respectively. Alpha-endosulphan degraded more readily than beta-endosulphan and endosulphan sulphate under both sterilized and non-sterilized soil conditions.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

17.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from <0.2 mg l(-1) to approximately 4 mg l(-1). Degradation rates of atrazine in oxygenated groundwater were relatively high with a zero-order rate of 240-380 microg l(-1) or a first-order half-life of 0.35 days. Amendment with an additional carbon source showed no significant improvement in biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.  相似文献   

18.
The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L(-1) of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.  相似文献   

19.
采用平衡振荡法,研究了砂土对非离子表面活性剂Triton X-100的吸附特征。结果表明,砂颗粒对Triton X-100的吸附能力总体较低,单位吸附含量均<1.1 mg/g;砂颗粒吸附Triton X-100过程中存在显著的吸附剂浓度效应,砂颗粒上Triton X-100含量随着固液比(吸附剂浓度)的增大而减小;吸附容量qm与平衡常数KL值随固液比变化而变化,Langmuir方程适用范围是起始浓度C0相对较小的固液吸附体系;0.5~1 mm石英砂的吸附能力略>0.2~0.5 mm石英砂,0.5~1 mm和0.2~0.5 mm石英砂吸附Triton X-100变化特征具有显著的一致性,采用高斯拟合模型可以反映出石英砂吸附Triton X-100的变化规律,相关系数R2均>0.98。  相似文献   

20.
The degradation of isoxaben [N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide] was studied in soil and in an aqueous system. Soil studies were conducted in Erlenmeyer flasks (treated with 1 microg/g isoxaben) and mineralization studies in Biometer flasks (treated with 1 microg/g unlabeled and 14C-isoxaben) incubated at 23 C. Degradation in the aqueous system was performed in Erlenmeyer flasks under aerobic and anaerobic conditions incubated at 23 degrees C. Incubation mixtures were extracted at selected times and analyzed for isoxaben and degradation products by HPLC with product identification confirmed by GC-MS. After 8 weeks, 78% and 23% of the total isoxaben disappeared in nonsterile and sterile soils, respectively. After 12 weeks, approximately 1% of the labeled isoxaben was recovered as CO2 in the Biometer flask experiments; no volatile products were detected, and 5% and 33% of the total radioactivity was recovered from the nonsterile and sterile soils, respectively. In the aquatic system after 8 weeks, isoxaben had decreased from 1microg/g to 0.1 and 0.004 microg/g under aerobic and anaerobic conditions, respectively. Degradation products detected from the soil studies were 3-nitrophthalic acid and 4-methoxyphenol, and 3-nitrophthalic acid in the aqueous system studies. Microbial activity was considered to be a major factor in the degradation of isoxaben in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号