首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric emission of methyl bromide (MeBr) and its potential alternative chemicals such as 1,3-dichloropropene (1,3-D) and propargyl bromide (PrBr) can contribute to air pollution and ozone depletion (for MeBr). One of the main sources of these chemicals is from agricultural soil fumigation. To understand the volatilization dynamics, emission of MeBr, 1,3-D, and PrBr through a polyethylene-based high-barrier film (HBF) and a virtually impermeable film (VIF) was measured using an air flow and sampling system that produced >90% mass balance. The experiment was conducted outdoors and was subjected to ambient daily temperature variations. The HBF film was found to be very permeable to 1,3-D and PrBr, but somewhat less permeable to MeBr. The VIF film was very impermeable to 1,3-D, PrBr, or MeBr. Measured volatilization flux, in general, exhibited strong diurnal variations which were controlled by film temperature. Unlike the HBF film, a time lag (∼12 h) was observed between high-temperatures and high-emission flux values for the VIF film. An impermeable film may be used as an effective means of controlling the atmospheric emission of MeBr and its alternative chemicals.  相似文献   

2.
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.  相似文献   

3.
A tall passive flux chamber with a height significantly greater than its horizontal dimensions is proposed for measuring fluxes of volatile organic compounds (VOCs) at the soil surface. The main feature of this tall chamber is the presence of a vertical concentration gradient of the target gas in the chamber. The emission and transport behavior of the target gas in the soil-chamber system are analyzed using the diffusion theory. A mathematical model is developed to estimate the flux from the soil into the tall chamber, providing the target gas establishes a detectable vertical concentration gradient in the chamber. To obtain the data required for calculating flux, only two gas concentrations (C1 and C2) at two heights (h1 and h2) within the chamber need to be measured at the end of a short chamber placement time (tp). To evaluate the applicability of the tall chamber for measuring flux, several laboratory tests have been conducted, using CH2Cl2 and CH3Br as the target gases. The results indicate that the proposed tall chamber has promising potential as a method for measuring fluxes of VOCs at the soil surface.  相似文献   

4.
The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.  相似文献   

5.
ABSTRACT

The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain realtime estimates of fugitive VOC emission rates.  相似文献   

6.
Abstract

Hazardous waste sites and industrial facilities contain area sources of fugitive emissions. Emission rate measurements or estimates are necessary for air pathway assessments for these sources. Emission rate data can be useful for the design of emission control and remediation strategies as well as for predictive modeling for population exposure assessments. This paper describes the use of a direct emission measurement approach – the enclosure approach using an emission isolation flux chamber – to measure emission rates of various volatile organic compounds (VOCs) from contaminated soil and water. A variety of flux chamber equipment designs and operating procedures have been employed by various researchers. This paper contains a review of the design and operational variables that affect the accuracy and precision of the method. Guidance is given as to the optimum flux chamber design and operating conditions for various types of emission sources. Also presented is a generic quality control program that gives the minimum number of duplicate, blank, background, and repeat samples that should be performed.  相似文献   

7.
Monte Carlo simulations were conducted on a set of flux chamber measurements at a landfill to estimate the relationship between the number of flux chamber samples and study area size on the emission rate measurement accuracy. The spatial variability of flux was addressed in the study by utilizing an existing flux chamber measurement data set that is one of the most dense flux chamber sampling arrays published to date for a landfill. At a probability of 95%, the Monte Carlo simulations indicated that achieving an accuracy within 10% with the flux chamber method is highly unlikely. An accuracy within 20% was achieved for small areas of less than about 0.2 hectares using 220 flux chamber measurements, but achieving this level of accuracy for area emission sources, of similar or greater variability, that are larger than this is highly unlikely. An accuracy within 30% was achieved up to the Full Area of about 0.4 hectares if more than approximately 120 samples were obtained. Even for an accuracy within 50%, at least 40 flux chamber measurements were needed for the Full Area of about 0.4 hectares. Available methods of estimating the number of samples required were compared to the Monte Carlo simulation results. The Monte Carlo simulations indicate that, in general, more samples are required than determined from an existing statistical method, which is a function of the mean and standard deviation of the population. Specifying the number of samples based on a regulatory method results in very poor accuracy. A modification to the statistical method for estimating the number of samples, or for estimating an accuracy for a given probability and number of samples, is proposed.

Implications: The flux chamber method is the most widely used method of measuring fugitive emission rates from area sources. However, extrapolation of a set of individual flux chamber samples to a larger area results in area flux measurement values of unknown accuracy. Quantification of the accuracy of the extrapolation of a set of flux chamber measurements would be beneficial for understanding the confidence that can be placed on the measurement results. Guidance as to the appropriate number of flux chamber measurements to achieve a desired level of accuracy would benefit flux chamber method practitioners.  相似文献   


8.
Methods for the determination of biocide emissions from treated materials into water and air were developed and tested in order to support a comparative ecological assessment of biocidal products. Leaching tests, experiments with simulated rain, extraction cleaning of carpets and emission chamber tests were performed with a series of treated materials. The experiments focused on the effect of changes in the procedure as well as characteristics of the specimens and demonstrate the suitability of the proposed methods for biocides of different product types. It was demonstrated that emissions of biocides into water can be compared on the basis of leaching tests in which the emission kinetics of the active ingredients are recorded. However, the water volume per surface area and the timetable for water changes have to be defined in such tests. Functions of flux rates related to time can be well described for inorganic compounds, whereas modelling of the data is more complicated for organic substances. Emission chamber tests using 20-litre and 23-litre glass exsiccators, originally developed to study volatile organic compounds, were successfully adapted for the investigation of the emission of biocides from treated materials which are usually semi volatile organic compounds. However test parameters and the method of analysis have to be adapted to the substances to be determined. Generally, it was found that the emission curves for the semi volatile organic compounds investigated differ from those of volatile organic compounds.  相似文献   

9.
Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m?2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1.These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.  相似文献   

10.
Zhu JP  Zhang JS  Shaw CY 《Chemosphere》2001,44(5):1253-1257
Measured emission factors are the experimental data used to represent emission characteristics of volatile organic compounds (VOCs) from testing materials under dynamic chamber test conditions. A simple empirical model that describes the measured emission factors will be very useful for practical purposes. In this study, a power law model was compared with a widely used first-order exponential decay model in their ability to describe measured emission factors of wood-based panel materials. It was demonstrated that the power law model is a better choice than the first-order model for describing emission characteristics for short-term (less than 100 h) experimental data. The power law model was also more superior in predicting long-term (up to 900 h) emission factors.  相似文献   

11.
Background Estimations of gaseous mercury volatilization from soils are often complex, stationary and expensive. Our objective was to develop a mobile and more simple, easy to handle and more cost-effective field method allowing rapid estimates of potential Hg emissions from soils. Methods. The study site is located in Germany, about 100 kilometers south-westerly of Berlin and influenced by the river Elbe and its tributary Saale river. The site is representative for a lot of other floodplain locations at the river Elbe and highly polluted with Hg and other heavy metals. For our study we developed a system consisting of a glass chamber gas, two gold traps, a battery operated pump and a gas meter. Adsorbed total gaseous mercury (TGM) in the gold traps was determined by use of atomic absorption spectrometry (AAS). Results and Discussion. In contrast to the common used flux chambers we designed a chamber without inlet and named it gas suck up chamber (GSC). TGM fluxes determined with the GSC showed a very close linear correlation (r = 0.993) between the TGM content in the gold traps and the corresponding pumped gas volume. The TGM adsorbed, increased proportional with increasing gas volume indicating homogenous concentrations of gaseous mercury in the soil air sucked. In contrast to the commonly used dynamic flux chamber with the aim of precisely measuring actual fluxes of Hg from a defined soil area, we focused on developing of a measurement system which will allow rapid estimates of potential Hg emissions of a site. Earlier research at the study site indicated a high potential for releasing volatile Hg from the soil to the atmosphere. Indeed, due to the high Hg content of the soil significant amounts of TGM could be detected and no shortage was reached. Conclusion. Our initial measurements are still too few in number neither to generalize the achieved results nor discuss controlling factors and processes. However, we are pleased to communicate that the developed GSC is well suited to become an effective sampling set up to rapidly estimate the magnitude of Hg volatilization from soils. Outlook. Further measurements at other polluted locations are necessary to verify the GSC method. In addition the use of a mercury analyzer instead of gold traps is planned for faster risk assessments.  相似文献   

12.
Three experiments were conducted in which intercomparisons were made between the equilibrium concentration technique, developed at JTI, Sweden, and the integrated horizontal flux technique for measuring ammonia emissions following applications of urea fertiliser, cattle slurry and solid pig manure to land. Mean square prediction error analysis was used to compare the emission rates measured by the two techniques. There were no significant differences between the measurement techniques, although there was some evidence that emission rates were overestimated by the equilibrium concentration method relative to the integrated horizontal flux technique at higher emission rates (>400 g.N ha−1 h−1). The equilibrium concentration method provides a practical and relatively inexpensive technique for measuring emissions under ambient conditions from small plots but good sampler preparation, adequate replication of emission measurements and appropriate choice of duration of sampling periods are necessities for obtaining reliable results.  相似文献   

13.
Plastic tarps are commonly used in raised bed strawberry production to minimize emissions of preplant soil fumigants and are left in place throughout the growing season as part of the standard cultural practices. Soil amendments with chemicals such as thiosulfate (S2O3(2-)) can reduce fumigant emissions. A field study was conducted near Santa Maria, CA to determine the effects of low density polyethylene (LDPE) and virtually impermeable film (VIF) over raised-beds and applying potassium thiosulfate (KTS) in furrows on reducing chloropicrin (CP) emissions from a strawberry field. Four fields (or treatments) were tested with 224 kg ha(-1) CP drip-applied threecm under the soil surface. The CP flux from bed tops and furrows and gas-phase concentrations under the tarps were monitored for five d. The CP emission flux and concentration under tarp were highest immediately following application. Diurnal temperature change affected CP concentration and emission fluxes (higher values during the day and lower at night). Slightly higher CP cumulative emission occurred using LDPE tarp (19%) compared to VIF (17%). Normalized flux (CP emission flux from the beds divided by CP concentration under the tarp) being estimated from field measurement was slightly higher for LDPE than VIF indicating different tarp permeability in the field. Because of extremely low emissions from the furrows (<0.2% of total emission loss), KTS application to furrow treatments did not show further emission reductions than non-KTS treatments. This indicates that emission reduction should focus on the tarp above raised-beds when fumigant was drip-applied near bed-surface.  相似文献   

14.
Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa.
Implications:This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric ozone from emitted NMVOC has also been studied. Our result shows how an open landfill site acts as a source and adds to the tropospheric ozone for the airshed of a metropolitan city.  相似文献   

15.
Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.  相似文献   

16.
Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000-40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the fullscale sensitivity of the gas sensing equipment. The use of 46-90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   

17.
The emissions of volatile sulfur-containing compounds from 13 flue gas desulfurization (FGD) sludge field storage sites have been characterized. Sulfur gas emissions from the sludge surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling sites. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex “U” traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cyrogenic gas chromatography using a sulfur-selective, flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: (a) the sulfur dioxide scrubbing reagent used, (b) sludge sulfite oxidation, (c) “unfixed” or “fixed” FGD sludge, and (d) ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of sludge, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the sludge. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the FGD sludge emissions. In addition, up to four unidentified organo- sulfur compounds were found in the emissions from four FGD sludges. The sulfur flux from one FGD storage pond was analyzed by gas chromatography-single ion monitoring mass spectrometry. In addition to the four identified sulfur compounds, this flux contained large concentrations of benzene, toluene, and α-pinene. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 100 acre (40.5 hectare) sludge impoundment surface.  相似文献   

18.
Two dynamic flux chambers for direct measurement of odorous compound emissions from quiescent liquid surfaces were investigated under simulated conditions in the laboratory. Initially, a flux chamber built according to the model recommended by French standard NF X 43-104 was studied. This chamber was used in two different ways. The first led to a lack of precision concerning emissions rates from the sampled liquid surface, whereas the second led to an overestimation of the measurements. The second part of the study was devoted to an improved dynamic flux chamber, built according to the feedback from the results obtained using the normalised sampling system. Laboratory tests showed good accuracy and precision. This work underlines the importance of the aerodynamic performances of a dynamic sampling system.  相似文献   

19.
Adsorption and desorption by indoor surface materials can have significant impacts on the level of volatile organic compounds (VOCs) indoors. The surface sink model (SSM) was developed to account for these interactions in an indoor air quality model. Two types of scale-up experiments were conducted to validate the SSM that was developed based on small-scale chamber experiments. Conflicting results were obtained from a large-scale laboratory experiment and a field test. From the large-scale laboratory experiment involving three materials and three chemicals, relatively good agreement was observed between measurements and predictions by the SSM. In contrast, the level of sorption in the field test was observed to be at least 9 times greater than was predicted by the SSM.  相似文献   

20.

The quantitative assessment of landfill gas emissions is essential to assess the performance of the landfill cover and gas collection system. The relative error of the measured surface emission of landfill gas may be induced by the static flux chamber technique. This study aims to quantify effects of the size of the chamber, the insertion depth, pressure differential on the relative errors by using an integrated approach of in situ tests, and numerical modeling. A field experiment study of landfill gas emission is conducted by using a static chamber at one landfill site in Xi’an, Northwest China. Additionally, a two-dimensional axisymmetric numerical model for multi-component gas transport in the soil and the static chamber is developed based on the dusty-gas model (DGM). The proposed model is validated by the field data obtained in this study and a set of experimental data in the literature. The results show that DGM model has a better capacity to predict gas transport under a wider range of permeability compared to Blanc’s method. This is due to the fact that DGM model can explain the interaction among gases (e.g., CH4, CO2, O2, and N2) and the Knudsen diffusion process while these mechanisms are not included in Blanc’s model. Increasing the size and the insertion depth of static chambers can reduce the relative error for the flux of CH4 and CO2. For example, increasing the height of chambers from 0.55 to 1.1 m can decrease relative errors of CH4 and CO2 flux by 17% and 18%, respectively. Moreover, we find that gas emission fluxes for the case with positive pressure differential (?Pin-out) are greater than that of the case without considering pressure fluctuations. The Monte Carlo method was adopted to carry out the statistical analysis for quantifying the range of relative errors. The agreement of the measured field data and predicted results demonstrated that the proposed model has the capacity to quantify the emission of landfill gas from the landfill cover systems.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号