首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species-level study on arsenic availability from dietary components   总被引:1,自引:0,他引:1  
Arsenic (As) contaminated water and foodstuffs are of major concern. Samples of drinking–cooking water (n = 50), raw rice (n = 50), common vegetables (eight types), and common pulses (three types) were collected from households in the endemic region. The study found up to 70% As reduction by using safe water for cooking of rice and vegetables. Speciation study reflected more arsenate than arsenite and other organic arsenicals in all the types of samples. Male intake of 293 μg As through drinking water contained 38 μg arsenite and 246 μg arsenate, and female intake of 199 μg As contained 167 μg arsenate and 25 μg arsenite. In cooked rice, 108 μg As contained 69 μg arsenate and 17 μg arsenite with 9 μg dimethylarsonic acid (DMA). Total As consumption from cooked vegetables was 45 μg with 34 and 4 μg of arsenite and arsenate, respectively, and 5 μg of DMA. Data indicate that cooking with As-free water removes arsenic in already contaminated foodstuffs but without interconversion of the As species, from toxic inorganic to less toxic organic forms.  相似文献   

2.
A speciation study of Pb and Mn in roadside dust along major roads in Ile-Ife, South Western Nigeria, was investigated. Pb and Mn values obtained by total digestion ranged from 22.23 ± 3.52 to 43.48 ± 3.05 μg/g and 35.93±0.15 to 83.76 ± 0.06 μg/g, respectively. The results of speciation analysis of Pb and Mn in the samples showed that the mean levels of these metals in the various fractions followed the order: organic matter>residual>Fe-Mn>carbonate>exchangeable and organic matter-bound>exchangeable>carbonate-bound>residual>Fe-Mn oxide-bound respectively. The speciation study therefore revealed that most of the Pb and Mn were associated with the organic matter fraction and that they were least available in the exchangeable and Fe-Mn oxide fractions, respectively. The apparent mobility and potential bioavailability for these metals in the road dust was Mn>Pb. There is a significant difference between the means of Pb and Mn in the road dust of the study area at p≤0.05, which strongly suggests that they may not have come from the same source; different sources may be responsible, which may be anthropogenic, such as tyre wear, vehicular emission, brake linings and natural.  相似文献   

3.
A robust and rapid methodology for the determination of iodine by inductively coupled plasma mass spectrometry in environmental samples is presented. Data were initially obtained for the validation of the analytical measurements, using 17 commercially available soil reference materials. The methodology was then tested on soil and water samples collected in Afghanistan where iodine deficiency and its effects are reportedly prevalent. Sample collections were conducted in Greater Kabul; the iodine in agricultural soils was determined to be in the range of 1.6–4.2 mg/kg and that in water drawn for drinking and irrigation was found to range from 9.9 to 22.7 μg/L. Samples were also collected in a second region, Nangarhar province, which is located to the east of Kabul, where goitres in the local population had been reported. The iodine content in soils and water at this location was 0.5–1.9 mg/kg and 5.4–9.4 μg/L, respectively. The organic content of soils in Kabul was found to be in the range of 1.9–4.2%; in Nangarhar, organic content ranged from 1.7 to 4.5%. All of the Afghan soils were slightly alkaline at pH 7.6–8.2.  相似文献   

4.
5.
Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0–6.2 μg/L) and Sb (<0.20–0.37 μg/L) below international drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.  相似文献   

6.
Mass spectrometry is a major tool for analysing organic pollutants. However, scientists often complain about laborious sample preparation. The development of new commercial high-resolution mass spectrometers gives a chance to improve simultaneously speed, reliability, and sensitivity of the analysis. Here, we used the time-of-flight high-resolution mass spectrometer Pegasus GC-HRT to identify and quantify 55 priority organic pollutants in water samples. This mass spectrometer has a high resolution of 50,000, a high mass accuracy of about 1 ppm and a very high acquisition rate of up to 200 full mass range spectra per second. 1 mL water samples were extracted with 1 mL dichloromethane. Results show that the sample preparation and analysis are achieved 30 times faster, requiring 1,000 times less water and 350 times less solvent than the classic 8270 method of the United States Environmental Protection Agency. The detection limit is 1 μg/L. The quantification limit is 10 μg/L. Our procedure, named accelerated water sample preparation, is simpler, faster, cheaper, safer and more reliable than 8270 Method.  相似文献   

7.
The contamination characteristics of arsenic and other trace elements in groundwater and the potential risks of arsenic from the groundwater were investigated. Elevated contamination of arsenic, barium and manganese was observed in tube-well water of two villages (Chuyen Ngoai and Chau Giang) in Ha Nam province in the Northern Vietnam. Concentrations of As in the groundwater ranged from 12.8 to 884 µg/L with mean values in Chuyen Ngoai and Chau Giang were 614.7 and 160.1 µg/L, respectively. About 83 % of these samples contained As concentrations exceeding WHO drinking water guideline of 10 μg/L. The mean values of Mn and Ba in groundwater from Chuyen Ngoai and Chau Giang were 300 and 657 μg/L and 650 and 468 μg/L, respectively. The mean value of Ba concentration in groundwater in both Chuyen Ngoai and Chau Giang was about 22 % of the samples exceeded the WHO guideline (700 µg/L). Arsenic concentrations in human urine of residents from Chuyen Ngoai and Chau Giang were the range from 8.6 to 458 µg/L. The mean values of Mn and Ba in human urine of local people from Chuyen Ngoai were 46.9 and 62.8 μg/L, respectively, while those in people from Chau Giang were 25.9 and 45.9 μg/L, respectively. The average daily dose from ingesting arsenic for consuming both untreated and treated groundwater is from 0.02 to 11.5 and 0.003 to 1.6 μg/kg day, respectively. Approximately, 57 % of the families using treated groundwater and 64 % of the families using untreated groundwater could be affected by elevated arsenic exposure.  相似文献   

8.
Chlorpyrifos insecticide uptake by plantain from polluted water and soil   总被引:1,自引:0,他引:1  
Chlorpyrifos is a common organophosphorus insecticide used for crop protection. Chlorpyrifos use has induced heath issues and water pollution. Such issues may be solved by phytoremediation, which is the use of plants for the cleanup of pollutants. Here, we tested Plantago major L. to clean water and soils under laboratory conditions. Results show that the concentration of chlorpyrifos residues after 5 days exposure reached 36.86 μg/g in roots and 13.93 μg/g in upper plant tissues. Gas chromatography–mass spectrometry (GC–MS) analysis of chlorpyrifos metabolites suggests the formation of 3, 5, 6-trichloro-2-pyridinol (TCP) and diethyl 3,5,6-trichloropyridin-2-yl phosphate (chlorpyrifos-oxon). Chlorpyrifos-oxon was detected in the roots and the leaves after 2 h of testing. After 24 h of testing, the degradation product chlorpyrifos-oxon increased in the roots and the leaves then decreased gradually until the end of testing. TCP levels increased gradually to 192 h then decreased until the end of testing.  相似文献   

9.
To assess the exposure doses of PM2.5 and to investigate its chemical components for the subpopulation (i.e., school children and industrial downwind residents), simultaneous sampling of indoor and outdoor PM2.5 was conducted at an elementary school close to traffic arteries and a residence located in the downwind area of a steel plant in metropolitan Guangzhou in 2010. Chemical components, i.e., organic carbon, elemental carbon and 6 water soluble ions were analyzed in PM2.5. A survey was also conducted to investigate the time-activity patterns of the school children and the industrial downwind residents. Indoor and outdoor PM2.5 were 63.2 ± 20.1 and (76.7 ± 35.8) μg/m3 at the school, and 118.8 ± 44.7 and 125.7 ± 57.1 μg/m3 in the community, respectively. Indoor PM2.5 was found to be highly related to outdoor sources, and stationary sources were the significant contributors to PM2.5 at both sites. The daily average doses of PM2.5 for the school children at the school (D children) and the industrial downwind residents in the community (D residents) were (7.6 ± 1.9) and (36.1 ± 36.8) μg/kg-day, respectively. The daily average doses of particulate organic mass and SO4 2? were the two most abundant chemical components in PM2.5. PM2.5 exposure for the school children was contributed by indoor and outdoor environments by 48.8 and 51.2 %, respectively; for the industrial downwind residents, the contributions were 66.0 and 34.0 %, respectively. Age and body weight were significantly and negatively correlated with D children, while age, body weight and education level were significantly and negatively correlated with D residents; gender was not a significant factor at both cases.  相似文献   

10.
Groundwater used for drinking and cooking was analysed for fluoride (F), and health surveys were conducted in Bodh Gaya, Amas and Bankebazaar blocks of the Gaya district, Bihar, India. Amas and Bankebazaar blocks were F endemic areas with mean F = 2.36 ± 0.23 mg/L (N = 27). Bodh Gaya was considered as control area with mean F = 0.59 ± 0.03 mg/L (N = 11). Health survey showed that more than 50 % of adults and more than 55 % of children had complaints of gastro-intestinal (GI) disturbances in the F endemic areas, while less than 20 % of adults and less than 10 % of children complained of GI problems in the control areas. Haematological analyses were conducted on age- and sex-matched fluorotic subjects (N = 93) of F endemic areas, and non-fluorotic subjects (N = 52) of control area showed lowered haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in the fluorotic subjects, suggesting the occurrence of anaemia in the fluorotic subjects.  相似文献   

11.
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (<2, 2–20, 20–200, >200 μm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC–MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0–4.5 m (layer B) and 6.0–7.5 m (layer C), relatively lower at 1.5–3.0 m (layer A) and 10.5–12.0 m (layer D). At all sampling sites, the silt (2–20 μm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2–3 ring species (86.5–98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20–200 μm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0–7.5 m, increasing with depth; while in deeper sand layer at 10.5–12.0 m, the >200 μm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2–3 ring PAHs were highly concentrated in the small size fraction (<2 and 2–20 μm); the 4–6 ring PAHs showed the highest concentrations in the 2–20 μm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.  相似文献   

12.
Trace metal concentrations were determined in particulate matter (PM10) in ambient air of four purposively selected residential areas in Ibadan, Nigeria namely Bodija market (BM), Ojo Park (OP), Oluyole Estate (OE) and University of Ibadan (UI). PM10 was determined in the morning (7–10 a.m.) and afternoon (2–5 p.m.) for 12 weeks in the dry season months of January–March using a volumetric sampler following standard procedures and levels compared with WHO guideline limits. Glass-fibre filter papers exposed to the particulate matter were digested using appropriate acid mixtures, and the digest analysed for trace metals including Ni, Cr, Mn, Zn, and Pb using ICPMS method and levels compared with WHO limits. Data was analysed using ANOVA and Pearson correlation test at 5 % level of significance. The highest mean PM10 concentrations 502.3 ± 39.9 μg/m3 were recorded in the afternoon period at BM, while the lowest concentration 220.6 ± 69.9 μg/m3 was observed in the morning hours at UI. There was a significant difference between the PM10 levels across the various locations (p < 0.05), and all the levels were higher than WHO limit of 50 μg/m3. The highest levels of Ni, Zn and Pb were recorded at BM, which also had the highest PM10 burden. The trend in Pb levels across the locations was BM > UI > OP > OE with the highest level 5.70 μg/m3 in BM nearly fourfolds WHO limits of 1.5 μg/m3. There was a significant correlation between PM10 and Ni (p < 0.05).Urban communities with increased human activities especially motor traffic recorded both higher levels of PM10 and toxic trace metals. There is need to carry out source apportionment to establish the origin of these trace metals in future studies.  相似文献   

13.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   

14.
The real behavior of water organic contaminants such as pesticides and pharmaceuticals is not well known because research experiments usually simplify the conditions by studying the sorption of a pure compound on a single solid. However, in natural waters, biofilms, suspended particles, and sediments are solid substances that coexist, and thus may change the contaminant fate. Therefore, we studied here the sorption of lindane and ciprofloxacin by three single-solid and three double-solid sorbents using batch experiments. We also compared the effect of dissolved organic matter (DOM) between single- and double-solid sorption systems. Results show that the sorption quantity of lindane to the double-solid system of suspended particles and sediments is lower, of 0.99 L/g, than the sum of sorption quantity in the single-solid system, of 1.39 L/g. The sorption quantity of ciprofloxacin is higher, of 2.70 L/g, than the sum of sorption quantity in the single-solid system, of 1.90 L/g. These findings are explained by changes in DOM that suppress or promote sorption. To our best knowledge, this is the first study to present evidence that coexisting river solids modify lindane and ciprofloxacin sorption.  相似文献   

15.
The sorption behaviour of alpha- and beta-endosulfan in soil organic matter was investigated using standard soil humic acid (HA) and soil fulvic acid (FA) with a modified solubility enhancement method and a dialysis bag technique. For HA, all the experiments were conducted at an ionic strength of 0.001 mol/L, in both the presence and absence of calcium and at an ionic strength of 0.01 mol/L. For FA, the experiments were conducted at two ionic strengths: 0.001 mol/L (with calcium) and 0.01 mol/L. This study is the first to describe the striking differences in the sorption behaviours of the two stereoisomers of endosulfan in HA and in FA. The sorption coefficients of alpha-endosulfan in HA and FA were significantly higher than those of beta-endosulfan. Beta-endosulfan has comparable sorption coefficients (1.5–5.4 L/g) in HA and in FA. Ionic strength and the presence of calcium have no significant effect on the sorption of beta-endosulfan in HA. However, calcium can significantly (p=0.01) enhance the solubility of alpha-endosulfan in HA. Changes in ionic strength by one order of magnitude also affect the solubility of alpha-endosulfan in HA. The sorption coefficients of alpha-endosulfan in HA (10–36 L/g) were greater than those in FA (9–14 L/g). The chirality of the alpha-isomer was hypothesised to be the primary reason behind its higher sorption in soil organic matter relative to the beta-isomer. In the presence of dissolved HA and FA found in natural soil environments, solubility of endosulfan can be increased by five times than the aqueous solubility of endosulfan without HA and FA.  相似文献   

16.
A novel extraction method was established to determine the water-extractable (available) content of sulfamethoxazole (SMX) in soil. The SMX imprinted polymers (MIPs) were synthesised and the performance was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy and binding experiments. Results showed that the MIPs exhibited good selectivity for SMX, so the MIPs were applied as a sorbent. SMX in soil was extracted by water, sorbed from the extract to MIPs and analysed with a high performance liquid chromatography (HPLC) after its desorption from MIPs. Meanwhile, the classic organic solvent extraction was employed to measure the total SMX content in soil. Results showed that when SMX level in spiked soils varying from 1.0–500?μg?kg?1, the observed recoveries of available SMX contents ranged from 63.27?±?3.11% to 82.11?±?2.77% (n?=?3), while the total SMX varied between 89.59?±?1.65% and 97.64?±?3.92% (n?=?3). The detection limit of the developed method for SMX in soils was 0.05?μg?kg?1. Available SMX contents in five field soil samples ranged from 0.13 to 4.14?μg?kg?1, which were only 0.35–25.40% of the respective total SMX contents. Results from this study manifest the importance of the extents of SMX immobilisation with different soils for assessing SMX's ecological and human health risks.  相似文献   

17.
This study aims to determine aluminum fractions in the fine earth of acidic soils under different land uses (forest, pasture and cultivation) and in the river bed sediments of the headwater of the Mero River in order to identify and quantify Al-bearing phases to assess Al mobility and potential bioavailability (environmental availability) in the monitoring area. Sequential extraction is used to evaluate the Al partitioning into six fractions operationally defined: soluble/exchangeable/specifically adsorbed, bound to manganese oxides, associated with amorphous compounds, aluminum bound to oxidizable organic matter, associated with crystalline iron oxides, and residual fraction (aluminum within the crystal lattices of minerals). The mean concentration of total aluminum (24.01 g kg?1) was similar for the three considered uses. The mean percentage of the aluminum fractions, both in soils and sediments, showed the following order: residual fraction ? amorphous compounds ≈ crystalline iron oxides > water-soluble/exchangeable/specifically adsorbed > bound to oxidizable organic matter ≈ Mn oxides. However, in the soils, the amorphous compounds and water-soluble/exchangeable/specifically adsorbed fraction showed considerable differences between some types of uses, the percentage of aluminum linked to amorphous compounds being higher in forest soils (16% of total Al) compared to other uses (mean about 8% of total Al). The highest values of water-soluble/exchangeable/specifically adsorbed Al were also found in forest soils (mean 8.6% of the total Al versus about 4% of pasture and cultivation), which is consistent with the lower pH and higher organic matter content in forest soils. Nevertheless, the potentially bioavailable fraction (sum of the first three fractions) is low, suggesting very low geoavailability of this element in both soils and sediments; hence, the possibility to affect the crops and water quality is minimal.  相似文献   

18.
Particulate matter concentrations were measured in an industrial region in the Ganjam district of Odisha. The average levels of suspended particulate matter (SPM) were measured to be 142 ± 8 and PM10 of particulate matter with a size of less than 10 micrometers (PM10) to be 50 ± 15 μg m?3. Out of the 14 elements determined, Ca, Na, Mg, Fe, and K contributed more than 95% of the total weight. In enrichment factors, the trace elements, i.e., Zn, Pb, Cd, and Hg were observed to be highly enriched in the SPM and PM10. Factor analysis indicates that more than 75% of the variance was due to five component factors, which have eigenvalues greater than 1. Intake of elements through inhalation route to adults has been estimated.  相似文献   

19.
Activated persulfates are efficient reagents for oxidation of organic contaminants and water treatment. Various compounds are currently used to activate persulfates, but there is a need for cheap and efficient activators. Here, we report the first use of steel slag, an industrial solid waste, as a solid activator for peroxydisulfate activation. We tested this system for bisphenol A degradation. Results indicate that about 70% of bisphenol A can be removed within 1 h. Conditions were 50 μg/L of bisphenol A, 2 g/L of peroxydisulfate, 3 g/L of steel slag and temperature of 298 K. The components and surface morphology of unused and recycled steel slag were analyzed by X-ray diffraction and scanning electron microscopy, whereas the main reactive oxygen species were elucidated by using radical scavengers. Findings show that both base oxides and iron oxides are responsible for peroxydisulfate activation. A redox mechanism involving liquid and solid phases is proposed. Overall, this study reveals the successful recycling of steel slag to activate persulfates for water treatment, following the principle of ‘waste control by waste.’  相似文献   

20.
In the present work, determination of ultratrace amounts of thallium in water samples was performed by ultrasound-assisted emulsification microextraction based on solidification of a floating organic drop as sample preparation method prior to furnace atomic absorption spectrometry. 1-(2-Pyridylazo)-2-naphthol was used as chelating agent. The factors influencing the complex formation and extraction, such as pH of the aqueous solution, the type and the volume of extraction solvent, the volume of chelating agent solution, and the extraction time were investigated. Under optimized conditions, the enrichment factor was 200. The calibration graph was linear from 0.2 to 10.0 μg L?1 with a correlation coefficient of 0.9966, the detection limit was 0.03 μg L?1 and reproducibility was ±3.3% (C = 5.0 μg L?1, n = 8). The method was successfully applied for the determination of thallium in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号