首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 13 毫秒
1.
为研究移动床生物膜反应器(MBBR)中微生物呼吸作用对微孔曝气氧传质效率(OTE)的影响,向清水中持续通入一定浓度的消氧剂——亚硫酸钠溶液,通过亚硫酸钠的氧化来模拟微生物的呼吸耗氧。基于不同填充率和曝气量工况条件下,考察了微生物耗氧速率(OUR)对OTE的影响。结果表明:在40L/h曝气量条件下,装置填充率在20%~50%时,标准氧传质效率(SOTE)与OUR存在着明显的正相关性,其线性拟合R2介于0.789 8~0.976 2;填充率为60%时,SOTE随OUR的增大无明显变化。装置填充率在50%、曝气量分别为40、80、100L/h时,SOTE随OUR的增大无明显变化;而曝气量为60L/h时,SOTE随OUR的增大明显增大。进一步分析试验结果得出,MBBR中,微生物OUR可用来近似表征OTE,但不同填充率和曝气量会对两者的相关性产生一定影响。  相似文献   

2.
强化O2,在废水处理中的溶解度及总传质系数是提高好氧生物处理技术效能的重要课题之一.采用富氧膜法制备O2体积浓度为28.8%的富氧气作为曝气源,研究了富氧气在水中的传质特性,考察了富氧气曝气对有机物降解的效果,研究了污水浓度、曝气量等因素对生物反应器效能的影响.结果表明,富氧曝气的生物降解效能显著高于空气曝气,并且存在最佳的反应时间及气体用量.本研究范嗣内,富氧曝气O2总传质系数是空气曝气的1.3倍;40~60 min为效能最大化的反应时间;污水浓度越高,富氧曝气的优势越明显.通过与外置式膜生物反应器组合后连续10 d运行,水力停留时间比空气曝气缩短近1/3,进水COD 450~700 mg/L,出水COD小于20 mg/L,去除率大于95%;出水NH3-N小于2 mg/L,去除率大于90%.出水无色无味,SS未检出,浊度小于0.1 NTU.表明富氧气曝气能显著提高生物反应器的效能.  相似文献   

3.
生物填料在污水处理中常用来增加生物量以提高污水的净化效率,同时生物填料的加入会影响曝气氧转移效率.考察了典型的SPR-1生物悬浮填料在清水中对微孔曝气氧传质过程的影响.结果表明,在水深为6.00 m时,SPR-1生物悬浮填料有助于促进微孔曝气的氧传质,当填料填充率为40%,单位体积通气量为0.755 m3/h时,氧总转移系数(KL a20)和标准氧转移效率(SOTE)提高程度最大,分别为19.32%和5.78%;当水深为2.33 m时,SPR-1生物悬浮填料对微孔曝气氧传质有阻碍作用.在实际污水处理过程中,可以根据水深,调节填料填充率来使填料最大限度地促进氧传质.  相似文献   

4.
微气泡曝气中氧传质特性研究   总被引:18,自引:0,他引:18  
气泡曝气过程中氧传质对于好氧生物处理过程具有重要意义。采用水力旋转剪切微气泡发生装置,考察了运行条件和水质特性对微气泡曝气中氧传质特性的影响。结果表明,微气泡曝气可获得较高的气含率和气泡停留时间;表面活性剂十二烷基磺酸钠(SDS)可以提高微气泡曝气的气含率和气泡停留时间。微气泡曝气中氧的总体积传质系数明显高于传统气泡曝气。总体积传质系数随着空气流量的增加而增加;氧传质效率随着空气流量的增加而减小,且对空气流量的变化更为敏感。在温度15~35℃范围内,微气泡曝气中氧的总体积传质系数随着温度的增加而增加,变化关系与传统气泡曝气基本相同,但对温度的变化更为敏感。微气泡曝气中,表面活性剂SDS会使氧的总体积传质系数略有降低,其不利影响明显小于传统气泡曝气;氧的总体积传质系数随盐度(NaC l浓度)增加而逐渐增加,并在NaC l浓度5 000 mg/L后趋于稳定。  相似文献   

5.
空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9μm减小到32.6μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。  相似文献   

6.
颗粒污泥与絮状污泥处理垃圾渗滤液的耐盐性能比较   总被引:1,自引:0,他引:1  
通过批次实验系统研究了好氧颗粒污泥和絮状污泥处理垃圾渗滤液时的耐盐性能。实验结果表明,进水含盐量小于10 000 mg/L时,实验所用好氧颗粒污泥和絮状污泥的有机物去除能力、沉降性能、污泥活性基本上不受进水含盐量变化的影响。当进水含盐量大于10 000 mg/L时,随着进水含盐量的增大,絮状污泥的污泥沉降指数(SVI)快速减小,污泥活性及去除有机物的能力下降;相比而言,好氧颗粒污泥沉降性能更为稳定,SVI基本维持在30 mL/g左右,污泥活性及去除有机物的能力缓慢下降。当进水含盐量重新降低时,好氧颗粒污泥沉降性能变化不大,污泥活性及去除有机物的能力恢复迅速;而絮状污泥沉降性能变差,污泥活性及去除有机物的能力仍受较大抑制。  相似文献   

7.
曝气是污水生物处理最重要的单元之一,也是能耗最高的单元,微孔曝气氧传质影响因素的探究一直是污水处理领域的研究热点。微孔曝气器的孔径与其运行气量是影响微孔曝气氧传质的重要因素。在1.5m水深条件下对不同孔径的钟罩型刚玉微孔曝气器在不同运行气量条件下的充氧性能进行了评价。结果表明,随微孔曝气器孔径增大,标准氧总转移系数(KLas)、标准氧转移速率(SOTR)、阻力损失(RL)、标准氧转移效率(SOTE)及理论动力效率(SAE)减小;随运行气量增大,KLas、SOTR、RL显著增大,而SAE、SOTE减小。  相似文献   

8.
孔径对微孔曝气充氧性能的影响   总被引:4,自引:0,他引:4  
孔径是微孔曝气产品最重要的参数之一,研究孔径对微孔曝气氧传质的影响对于提高微孔曝气器充氧性能有重要意义。本研究在1.5 m水深条件下对不同大小孔径的钟罩型塑料微孔曝气器充氧性能进行评价。结果发现,在实验条件下,微孔曝气器的阻力损失RL、标准氧总转移系数KLas、标准氧转移速率SOTR,标准氧转移效率SOTE及理论动力效率E随孔径增大而显著减小。  相似文献   

9.
SBR法处理豆制品废水工艺条件的研究   总被引:7,自引:0,他引:7  
用SBR法处理豆制品废水的试验表明,该系统具有较好的抗负荷冲击能力,进水COD在300—2000mg/L之间变化,对系统不造成任何影响;考察了曝气时间、曝气量和污泥浓度等对去除效果的影响,试验结果表明,曝气时间和曝气量对处理效果影响很大。确定该反应系统最佳曝气时间是8h,适宜的曝气量是800L/h,而污泥浓度控制在4000mg/L左右时,处理效率最高,采用进水顶出水的排水方式是可行的,确定系统的最佳排水比是3/5。厌氧段的插入可以减少剩余污泥的产量。  相似文献   

10.
曝气密度(即曝气面积占曝气系统服务总面积的比率)是曝气系统重要的参数之一。以标准氧总转移系数作为评价指标,在小试装置中对不同曝气密度的曝气系统充氧性能进行评价。结果表明:(1)曝气系统标准氧总转移系数随曝气密度增大而显著增大,但同时需要考虑到曝气系统的微孔曝气器布置方式;(2)相同气量下,曝气系统的气泡直径与气泡运动速度随曝气密度增大而减小,气泡停留时间和气含率随曝气密度增大而增大。  相似文献   

11.
用微电极测定曝气量对SBR系统中硝化作用的影响   总被引:1,自引:0,他引:1  
为了研究曝气量对硝化作用的影响,实验采用3个相同的SBR装置,分别在曝气量为4、10和16 L/h的条件下处理人工污水,并采用自制的溶解氧、NO3-、NH4+和pH微电极测定了活性污泥絮体内部微元环境中相应基质的浓度。结果表明,曝气量为4 L/h时,活性污泥絮体内存在厌氧微区,NO3--N浓度减小了,发生了反硝化作用;而曝气量为10 L/h和16 L/h时,活性污泥絮体内发生的都是硝化反应,且NH4+-N浓度的减小量、NO3--N浓度的增大量都随着曝气量的增大而增大,pH随着曝气量的增大而减小。  相似文献   

12.
庄雯  罗建中 《环境工程学报》2013,7(5):1797-1802
为减轻和消除含高浓度KMnO4的牛仔服加工废水对生物处理系统的毒害作用,采用模拟序批式活性污泥法,研究KMnO4对活性污泥微生物生长的影响及COD和NH4+-N的降解规律。结果表明,当处理进水COD浓度500 mg/L,NH4+-N浓度23.5 mg/L,污泥浓度为2 000 mg/L时,曝气时间为4 h,KMnO4质量浓度增加对COD和NH4+-N的降解影响很大;同样条件下曝气时间改为8 h,对NH4+-N的降解影响显著减小,但对COD的降解影响减少不多;并且,高浓度KMnO4对NH4+-N去除效果的抑制作用比对COD的大。因此,处理含高浓度KMnO4的废水需要延长一倍曝气时间,可以获得良好的COD和NH4+-N的降解效果。同时,KMnO4对活性污泥的抑制影响较好地吻合非竞争性抑制机理修正莫若特方程的规律。  相似文献   

13.
针对小城镇污泥的处理问题,提出了蚯蚓生物滤池解决方案,为此在实验中设置了无蚯蚓对照组,并对污泥的稳定性、污泥性状、蚯蚓与微生物的协同作用以及污泥含有的各种元素存在状态进行了研究,通过蚯蚓生物滤池处理后污泥有机质含量平均相对减少量为11.1%,溶解性化学需氧量(SCOD)增加,滤液中氨氮(NH3-N)含量由20.6~23.9 mg/L降至1.9~4.6 mg/L、滤液中硝态氮(NO3--N)含量由0.2~9.5 mg/L升高到42.0~50.8 mg/L,因此,实验结果表明,蚯蚓生物滤池能显著提高污泥的稳定性,改善污泥脱水性能,有利于污泥后续处理。  相似文献   

14.
以人工配水启动SBR,逐步提高进水苯酚浓度,探究好氧颗粒污泥对苯酚的降解能力,同时分析苯酚对好氧颗粒污泥特性的影响。经过55 d的运行,进水苯酚浓度逐渐增到3 000 mg/L,苯酚、COD及NH+4-N去除率分别达到了98.33%、97.27%和57.58%,好氧颗粒污泥表现出对苯酚的良好的去除能力。扫描电镜照片显示投加苯酚后的颗粒污泥表面更加光滑,结构更为紧凑。胞外聚合物红外光谱分析表明投加苯酚前后好氧颗粒污泥EPS的主要组分没有明显改变。苯酚毒性刺激了颗粒污泥分泌更多胞外聚合物,胞外聚合物中多糖含量由初始的12.70 mg/g VSS增加到35.17 mg/g VSS,蛋白含量由4.93 mg/g VSS增加到8.01 mg/g VSS。投加苯酚后的污泥粒径明显增大,主要污泥粒径由0.5~2.0 mm增大到2.0 mm以上。  相似文献   

15.
活性污泥法处理高钙废水中污泥特性的变化   总被引:3,自引:0,他引:3  
通过单级SBR法处理模拟高钙废水,研究了活性污泥法处理高钙废水的过程中钙离子对COD,MLVSS,MLSS,SVI,污泥增长速率,污泥形态结构及生物相的影响,揭示活性污泥法处理高钙废水的过程中污泥量巨大的原因。采用逐步增加钙离子浓度的方法,检测到在污泥培养期([Ca2+]=0 mg/L),COD去除率为98.1%,MLVSS和MLSS稳定在4 900~5 500mg/L,污泥增长速率为67 mg/(L·d),SVI为55~60 mL/g;在驯化处理期([Ca2+]=120~2 400 mg/L),COD去除率降至87.37%,MLVSS降至2 500 mg/L,MLSS增加至19 300 mg/L,污泥增长速率为212.31 mg/(L·d),SVI降至25 mL/g;在冲击期([Ca2+]=4 000 mg/L),COD去除率降至69.23%,MLVSS降至1 600 mg/L,MLSS迅速增加至24 200 mg/L,污泥增长速率为816.67 mg/(L·d),SVI降至14 mL/g。经显微镜观察发现,污泥絮体由松散变得密实,生物相由钟虫等指示性微生物变为不适应环境的胞囊结构。结果表明,随Ca2+浓度的增加,COD去除率下降,MLSS迅速增加,MLVSS和SVI急剧缩小,说明活性污泥中的活性微生物逐渐减少,而无机物组分逐渐增多;钙离子的加入促使系统碳酸平衡向右移动,使离子状态的钙大部分转化为难降解的碳酸盐,并附着于污泥絮体上,污泥绒粒被压缩,使污泥颗粒密实度及MLSS迅速增加,导致污泥排放量巨大。  相似文献   

16.
采用酸性洗涤塔、生物滤塔和生物曝气池的组合工艺处理NH3、H2S恶臭混合气体,研究表明,该组合工艺对NH3和H2S有很好的去除效果,在进气流量为35 L/min,喷淋量45 L/h时,NH3进气浓度50.15~525.4 mg/m3,H2S进气浓度10.23~110.36 mg/m3时,NH3单一进气去除率稳定在99%以上,H2S单一进气去除率90%以上。混合进气后,NH3去除率几乎为100%,H2S的去除率提高至98%以上。在一定的浓度范围内,NH3和H2S之间的相互作用对两者的去除效果没有明显的影响,而且起到了相互促进降解的作用。同时,进气流量和填料层高度都会影响NH3、H2S的去除率。系统对进气容积负荷变化的缓冲能力强,在偶尔超负荷条件下运行并不能使系统崩溃,并且微生物对高负荷逐渐表现出适应性。大部分溶于水的氨由生物曝气池去除,去除率达到96.9%。  相似文献   

17.
采用循环式活性污泥法(CAST)处理模拟生活污水,通过控制曝气量,使反应器中DO在0.13~0.74 mg/L之间,在常温下快速实现亚硝酸型硝化,然后增大曝气量使反应器内DO在0.7~3.36 mg/L之间,控制曝气时间1.5 h,考察系统内亚硝酸型硝化的维持情况。结果表明,14℃条件下,通过先控制低溶解氧浓度再控制曝...  相似文献   

18.
经长时间稳定化形成的矿化污泥中,含有种类丰富和数量繁多的降解性微生物,具有处理渗滤液的潜力。建立3个矿化污泥生物反应器,即C1(粉煤灰0%),C2(粉煤灰9.1%),C3(粉煤灰16.7%),以处理垃圾填埋场老龄渗滤液。在单级矿化污泥反应器中,当进水COD和NH3-N分别约为1350和900 mg/L时,水力负荷为17.7~70.8 L/(m3.d),COD去除率可超过65%,氨氮的去除率可超过94%。粉煤灰的加入一定程度上降低了COD去除率,但有助于氨氮的去除。在二级矿化污泥生物反应器中(即C3~C1串联),水力负荷为35.4 L/(m3.d)的工况下,当COD、TOC、IC和NH3-N分别为1 500~2 500,500~900,1 200~1 600和1 200~1 450 mg/L时,出水可达到COD<300 mg/L,TOC<180 mg/L,IC<100 mg/L,NH3-N<5 mg/L。但是,矿化污泥生物反应器对渗滤液总氮的去除率较低,仅为20%左右。  相似文献   

19.
邹高龙 《环境工程学报》2014,8(6):2467-2472
针对城市生活污水,研究了两点进水倒置A2/O-MBR(平板膜)系统(以下简称系统)对COD、NH+4-N、TN、TP、出水SS影响。结果表明,该系统对COD、NH+4-N具有较高的去除率,出水符合GB18918-2002中一级A标准;当混合液回流比为200%时,系统出水TN浓度小于15 mg/L;正常排泥后,系统对TP的去除率达83%左右;平板膜破损会导致出水SS、COD会受到影响。膜对COD、TP、SS有直接截留作用,由于系统出水几乎没有固体损失,可以精确控制污泥龄,有利于世代周期较长的硝化菌和反硝化菌生长;系统中的污泥浓度可以提高至15 000 mg/L,此时,即使进水量提高0.5倍,出水水质仍保持良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号