首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
Surfactants may be used in remediation of subsoil and aquifer contaminated with hydrophobic compounds. The objectives of this study were to examine the effect of soil texture on hydrophobic organic contaminant (HOC; toluene, or 1,2,4-trichlorobenzene [TCB]) removal from six soils and to evaluate the optimal composition of soil texture for maximum HOC removal using aqueous surfactant solution. Selected surfactants were 4% (vol/vol) sodium diphenyl oxide disulfonate (DOSL) and 4% (wt/vol) sodium lauryl sulfate (LS). Toluene and TCB were selected as the lighter-than-water nonaqueous phase liquid (LNAPL) and denser-than-water nonaqueous phase liquid (DNAPL) model substances, respectively. Soil types used for this study were Ottawa sand and five Iowa soils (Fruitfield, Keomah, Crippin, Webster, and Galvar). The greatest recovery of toluene and TCB in batch tests was 73% and 84%, respectively, which was obtained with DOSL surfactant in Ottawa sand. The toluene removal of 95% in column tests has been achieved in the Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 3750 ml (about 32 pore volume) passed. TCB removal of 98% in column tests has been achieved in Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 2500 ml (about 21 pore volume) passed. These results were related with soil texture (clay content 30%), clay mineralogy (kaolinite and smectite), as a function of transported pore volume.  相似文献   

2.
Modeling soil organic matter dynamics as affected by soil water erosion   总被引:6,自引:0,他引:6  
Soil organic carbon (SOC) stock is an important component of the global carbon (C) cycle, which has the potential to influence global climate. In this paper we presented an overview of soil organic matter (SOM) models in the context of soil erosion and discussed basic processes driving erosion-induced SOC loss. Although the mechanism of this loss is poorly understood, erosion influences SOC in two ways: redistribution of C within the watershed or ecosystem, and loss of C to the atmosphere. Erosion disperses soil, altering its microbiological activity as well as water, air and nutrient regimes. This, along with sediment enrichment, has an impact on greenhouse gas emission from soil. For most of agricultural settings, field studies suggest that cultivation along with soil erosion are the primary reasons for SOC loss. Tracing the fate of eroded C is a challenging task. Modeling is the approach taken most often. In this paper we discuss approaches used in various SOC models to assess erosion-induced C loss from soil in agricultural ecosystems. An example with Century model applied to meadow and corn-soybean rotation under chisel-till demonstrated the model's ability to respond well to different erosion scenarios. It was estimated that at soil loss rate of 10 t ha(-1) year(-1) (value often considered a threshold for maintaining productivity) 19% of the total SOC loss would be attributed to erosion after 90 years of cultivation.  相似文献   

3.
Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an holistic approach to sustainable management of these ecosystems. The ECBs of RMS ecosystems are not well understood. An ecosystem method of evaluating ECB of RMS ecosystems is proposed.  相似文献   

4.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

5.
Changes to natural organic compounds by acid deposition and subsequent effects on Al mobilization are not well understood. The HUMEX catchment-scale acidification experiment in western Norway offers a unique possibility for an integrated assessment of these interactions. In this report, the soil and soil water chemical data from the HUMEX site, from before and after the onset of experimental acidification, are used to characterize the catchment. Changes in soil water chemistry are discussed and controls on dissolved organic carbon are addressed in relation to Al mobilization. Decreases in the concentration of dissolved organic carbon (DOC) and organic Al fractions were found in soil water after the treatment started. These changes were related to an increase in soil water sulphate concentrations. The sulphate levels showed a significant increase (on a 95% level) in four of ten soil horizons while nitrate remained nearly unchanged. In organic soils, where the dissolved organic carbon content was high, the major control for monomeric aluminum concentration appeared to be the amount of exchangeable aluminum in the soil. In mineral soils, the gibbsite dissolution may govern inorganic Al concentrations in soil water, though substantial undersaturation was found when DOC was high.  相似文献   

6.
A soil sampling intercomparison exercise for the ALMERA network   总被引:1,自引:0,他引:1  
Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a “reference site”, aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.  相似文献   

7.
Soil-fungus transfer coefficients are usually defined as the ratio between the content of the fruiting bodies and that of the soil. Since, however, the methodology of how to determine the soil content is not firmly established, there exist a variety of definitions in the literature. We analyzed the 137Cs, 90Sr, 40K, and 226Ra content of mushroom and soil samples from two pine-wood ecosystems in Spain. The location of the mycelium in the soil profiles of these ecosystems was determined by means of the ergosterol concentration. The results showed the mycelium to generally be localized in the surface layer of soil (0-5 cm). We also carried out a speciation procedure for this layer of soil to determine the different degrees of association of the radionuclides in the soil. The results led us to propose some variations to the traditional definition used in quantifying radionuclide transfer. With these modifications, we were able to analyze Cs-K competition in several species of mycorrhizal and saprophytic fungi.  相似文献   

8.
Novel approach to monitoring of the soil biological quality   总被引:13,自引:0,他引:13  
In this study, a new approach to interpretation of results of the simple microbial biomass and respiration measurements in the soil microbiology is proposed. The principle is based on eight basal and derived microbial parameters, which are standardized and then plotted into sunray plots. The output is visual presentation of one plot for each soil, which makes possible the relative comparison and evaluation of soils in the monitored set. Problems of soil microbiology, such as the lack of benchmarking and reference values, can be avoided by using the proposed method. We found that eight parameters provide enough information for evaluation of the status of the soil microorganisms and, thus, for evaluation of the soil biological quality. The usage of rare parameters (potential respiration PR, ratio of potential and basal respiration PR/BR, biomass-specific potential respiration PR/C(bio), available organic carbon C(ext), and biomass-specific available organic carbon C(ext)/C(bio)) can be recommended, besides classical and well-known parameters (microbial biomass C(bio), basal respiration BR, metabolic coefficient qCO(2)). The combination of basal parameters and derived coefficients can also extend our knowledge about the condition of the soil microorganisms. In monitoring the case studies presented, we observed that soils evaluated to possess good biological quality displayed generally higher values of organic carbon, total nitrogen, clay, and cation exchange capacity. The soils of good biological quality can display higher levels of contaminants. This is probably related with the higher content of organic carbon and clay in these soils.  相似文献   

9.
10.
Re-emission of heavy water vapour from soil to the atmosphere   总被引:1,自引:0,他引:1  
The re-emission process of tritiated water (HTO) deposited on a soil surface is an important process to assess tritium doses to the general public around nuclear fusion facilities in future. A field experiment using heavy water (HDO) as a substitute for HTO was carried out in the summertime to investigate the re-emission process of HTO from soil to the atmosphere. In the experiment, the time variations of depth profiles of HDO concentrations in soil exposed to HDO vapour and soil mixed with HDO were measured during the re-emission process on the field. The HDO concentrations in soil water in top soil layers of both the exposed and mixed soil rapidly decreased with time during the re-emission. However, the decrease of exposed soil was much greater than that of mixed soil. The re-emission process was analysed using a model including the evaporation of HDO from soil, the exchange between soil HDO and air H2O, and the diffusion of HDO in soil. It was found that the model is applicable to calculating the time variations of detailed depth profiles of HDO concentration in soil water in surface soil layers, using an estimated exchange velocity.  相似文献   

11.
A set of criteria allowing demarcation between algocenoses is proposed. These criteria characterize the species composition, group of dominants, and taxonomic and ecological structure of algocenoses.  相似文献   

12.
During a 10-year period, 1988-1998, surface soil samples have been collected at Blentarp in southern Sweden and analysed for 137Cs from the Chernobyl accident and from the nuclear weapons tests. The distance between the sampling plots on the different sampling occasions has been no more than 3 m. The results show that the depth distribution of 137Cs is very similar for each of the sampling occasions, indicating that the caesium migration at this site is very small. The total activity measured in the soil cores is in agreement with the calculated activity of 137Cs deposited at the site after nuclear weapons tests and the Chernobyl accident, based on air activity concentration and the amount of precipitation. The calculated deposition of 137Cs originating from the bomb tests amounts to 1.41 kBq m-2 for the period 1962-1986, which is in agreement with the activity of nuclear weapons fallout measured in the soil samples (1.60 kBq m-2 as a mean value of the first four years of sampling). The calculated activity of 137Cs of Chernobyl origin was 0.79 kBq m-2, which agrees well with the value of 0.79 kBq m-2 measured in the soil samples in 1988.  相似文献   

13.
Parameters regarding fate of 63Ni in the soil–plant system (soil: solution distribution coefficient, Kd and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of 63Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm × 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer®) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq 63NiCl2. Maize was harvested 135 days after 63Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of 63Ni by maize was calculated for leaves and kernels. Water drainage and leaching of 63Ni were monitored over the course of the experiment. Values of Kd in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that 63Ni was strongly retained at the soil surface. Prediction of the 63Ni downward transfer could not be reliably assessed using the Kd values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of 63Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.  相似文献   

14.
Bioremediation of oil sludge-contaminated soil   总被引:21,自引:0,他引:21  
Bioremediation has become an important method for the restoration of oil-polluted environments by the use of indigenous or selected microbial flora. Several factors such as aeration, use of inorganic nutrients or fertilizers and the type of microbial species play a major role in the remediation of oil-contaminated sites. Experiments were undertaken for bioremediation of oil sludge-contaminated soil in the presence of a bacterial consortium, inorganic nutrients, compost and a bulking agent (wheat bran). Experiments were conducted in glass troughs for the 90-day period. Bulked soil showed more rapid degradation of oil compared to all other amendments. During the experimental period, wheat bran-amended soil showed 76% hydrocarbon removal compared to 66% in the case of inorganic nutrients-amended soil. A corresponding increase in the number of bacterial populations was also noticed. Addition of the bacterial consortium in different amendments significantly enhanced the removal of oil from the petroleum sludge from different treatment units.  相似文献   

15.
Uptake of 137Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant–soil 137Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of 137Cs concentrations in plants among soils was related to differences in soil solution 137Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The 137Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997–1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in 137Cs and K concentrations in soil solution. It is concluded that differences in 137Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.  相似文献   

16.
Using nematodes in soil ecotoxicology   总被引:1,自引:0,他引:1  
Nematodes represent a very abundant group of soil organisms and non-parasitic species are important for soil quality and in the soil food web. In recent years, it has been shown that nematodes are appropriate bioindicators of soil condition and they are also suitable organisms for laboratory toxicity testing. The aims of this paper are to overview and critically assess methods and approaches for researching soil nematode ecotoxicology. In natural ecosystems, nematode abundance and community structure analyses were proved to be sensitive indicators of stress caused by soil pollutants and ecological disturbance. Community structure analyses may be approached from a functional or ecological point of view; species are divided into groups according to their feeding habits or alternatively the maturity index is calculated according to their ecological strategy. Many environmental factors have the potential to affect nematode community, which consequently results in high space and time variability. This variance is major handicap in field ecotoxicological studies because pollutant-nematode relationships are obscured. For prospective risk assessment of chemicals, several toxicity tests with nematodes were developed and are increasingly used. Sensitivity of these tests is comparable to tests with other soil species (e.g. enchytraeids, earthworms and springtails) while tests are less demanding to space and time. Most studies have focused on metal toxicity but organic compounds are almost overlooked. Endpoints used in tests were often mortality, reproduction or movement, but more sublethal endpoints such as feeding or biomarkers have been used recently too. Although there is an increasing amount of knowledge in soil nematode ecotoxicology, there is still a lot of various issues in this topic to research.  相似文献   

17.
In the effort to predict the risks associated with contaminated soils, considerable reliance is placed on plant/soil concentration ratio (CR) values measured at sites other than the contaminated site. This inevitably results in the need to extrapolate among the many soil and plant types. There are few studies that compare CR among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity to the gardens. Special emphasis was placed on iodine (I) because data for this element are sparse. For many elements, there were consistent trends among CRs for the various crop types, with leafy crops > root crops ≥ fruit crops ≈ seed crops. Exceptions included CR values for As, K, Se and Zn which were highest in the seed crops. The correlation of CRs from one plant type to another was evident only when there was a wide range in soil concentrations. In comparing CRs between crop types, it became apparent that the relationships differed for the rare earth elements (REE), which also had very low CR values. The CRs for root and leafy crops of REE converged to a minimum value. This was attributed to soil adhesion, despite the samples being washed, and the average soil adhesion for root crops was 500 mg soil kg−1 dry plant and for leafy crops was 5 g kg−1. Across elements, the log CR was negatively correlated with log Kd (the soil solid/liquid partition coefficient), as expected. Although, this correlation is expected, measures of correlation coefficients suitable for stochastic risk assessment are not frequently reported. The results suggest that r ≈ −0.7 would be appropriate for risk assessment.  相似文献   

18.
Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).  相似文献   

19.
The potential of soil microorganisms to enhance the retention of (137)Cs and (85)Sr in organic systems was assessed in a series of experiments. A biologically active, 'mineral-free', organic material, produced under laboratory conditions from leaves, was used as the uptake matrix in all experiments to minimise potential interference from competing clay minerals. Biological uptake and release were differentiated from abiotic processes by comparing the sorption of radionuclides in sterilised organic material with sterile material inoculated with soil extracts or single fungal strains. Our results show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material. The presence of soil microorganisms significantly enhanced the retention of Cs in organic systems and approximately 70% of the Cs spike was strongly (irreversibly) bound (remained non-extractable) in the presence of microorganisms compared to only approximately 10% in abiotic systems. Sorption of (85)Sr was not significantly influenced by the presence of soil microorganisms. A non-linear temperature response was observed for the retention in biotic systems with increased uptake at between 10 and 30 degrees C and lower retention at temperatures above or below the optimum range. The optimum temperatures for biological uptake were between 15 and 20 degrees C for Cs, and 25 and 30 degrees C for Sr. Our results indicate that single strains of soil and saprotrophic fungi make an important contribution to the sorption of Cs and Sr in organic systems, but can only account for part of the strong, irreversible binding observed in biotic systems. Single strains of soil fungi increased the amount of non-extractable (137)Cs (by approximately 30%) and (85)Sr (by approximately 20%) in the organic systems as compared to abiotic systems, but the major fraction of (137)Cs and (85)Sr sorbed in systems inoculated with saprotrophic fungi remained extractable.  相似文献   

20.
The environmentally friendly and safe disposal of waste discarded rubber tyres are becoming a matter of serious concern across the globe because of its detrimental effect on health, environment and ecological systems. The paper aims at assessing the impact of waste rubber tyre inclusion on the geotechnical properties of clayey soil. Discarded rubber in the form of crumb rubber of size ranging between 0.8 and 2 mm varying from 0 to 10% was used in this investigation. Several tests, namely compaction, unconfined compressive strength, split tensile strength, California bearing ratio, consolidation and swelling pressure, along with microstructural studies have been carried out on different combinations of clayey soil and crumb rubber. The results of the study demonstrate that the inclusion of crumb rubber reduces the maximum dry unit weight and optimum moisture content of the clay. The addition of crumb rubber up to 5% in the clay causes an insignificant increase in the unconfined compressive strength and split tensile strength. Compared with the clayey soil, the inclusion of crumb rubber up to 5% improves the California bearing ratio of the clayey soil in unsoaked condition. It has also noticed that addition of crumb rubber helps in reducing the compression index and swelling pressure of the clayey soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号