首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

2.
The effect of feeding the flagellate Isochrysis galbana (Parke; clone T-Iso) of modified lipid composition on the growth and lipid composition of juvenile scallops [Placopecten magellanicus (Gmelin)] was investigated in the spring of 1993. I. galbana grown in 85-liter cage culture turbidostats under conditions of nitrogen limitation had a significantly higher total lipid content than when grown under nutrient-replete conditions. This was due mainly to a doubling in the amount of less unsaturated triacylglycerol in the cells. The concentrations of methyl and ethyl ketones were also greater in nitrogen-limited cells. Diets of nitrogen-limited I. galbana and nutrient-replete I. galbana grown in continuous and semi-continuous cultures were compared. Scallop juveniles were batch fed daily, and measurements of ingestion were determined. Samples of juveniles were removed periodically for determination of organic weight. The juveniles did not grow when fed nitrogen-limited or nutrient-replete I. galbana alone; however, when each diet was supplemented with 20% of the diatom Chaetoceros muelleri (Lemm.), there was a significant increase in growth in the juveniles receiving the nitrogen-limited I. galbana compared with juveniles on other diets. In comparison with I. galbana,  C. muelleri provided a rich source of carbohydrates and the essential fatty acid 20:4ω6. This study shows the importance of providing optimal dietary levels of ω3 and ω6 polyunsaturated fatty acids, as well as less unsaturated fatty acids and carbohydrates. Received: 29 September 1997 / Accepted: 2 October 1998  相似文献   

3.
The nutritional value of Artemia sp. as food for marine fish and crustacean larvae has been linked to the level of its polyunsaturated fatty acid (PUFA) content. Experiments in August 1984 were conducted to determine the effects of various artificial diets and algae on fatty acid composition of PUFA-deficient Artemia sp. (Utah GSL strain) and their resulting value as food for postlarvae of the prawn Penaeus monodon (Fabricius). Nauplii of the brine shrimp were grown on extracts of corn, copra, soybean and rice bran containing precursors (C18) to long-chain PUFA and also on algal species containing different levels of long-chain PUFA (C20). The nauplii were then used as food for P. monodon postlarvae. The results revealed that absence of C20 polyunsaturates from the feeds and their presence in the algae were reflected in the polyunsaturated fatty acid content of the tissues of Artemia sp. When fed with brine shrimp fed on algae, P. monodon displayed better postlarval survival and significantly higher growth; related to the content of polyunsaturated fatty acids in Artemia sp. A practical feeding approach in prawn hatcheries would be to grow Artemia sp. on a cheap diet such as rice bran, and then to enhance its nutritional value with a diet high in PUFA prior to harvesting, in order to improve hatchery production.  相似文献   

4.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

5.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

6.
The invasive caprellid amphipod Caprella mutica is one of the most widely dispersed marine non-native species globally. Originating in sub-boreal north-east Asia, it has now been found in both the northern and the southern hemispheres. One potential reason why this species is such a successful invader is its ability to utilise a wide variety of food sources. The contribution of different food sources to the diet of C. mutica was estimated using fatty acids as biomarkers. Caprella mutica was collected from three field sites, including sea cages stocked with Atlantic salmon Salmo salar, shellfish longlines stocked with the blue mussel Mytilus edulis and mooring lines marking the Loch Linnhe Artificial Reef (>2 km from caged finfish aquaculture), where established populations of this species are known to occur. In addition, the fatty acid compositions of C. mutica held in aquaria and either fed the microalga, Dunaliella tertiolecta, or the diatom, Phaeodactylum tricornutum, for a period of 21 days were investigated. The fatty acid composition of the diatom and the microalgal diets was also examined. The results showed that C. mutica contained high levels of polyunsaturated fatty acids, particularly 20:5(n-3); other dominant fatty acids included 18:1(n-9), 22:6(n-3) and 16:0 (in decreasing order based on abundance). Significant differences in the fatty acid profiles between caprellids fed on the microalgae and the diatom diets and between C. mutica collected from the field sites were observed. These results provide evidence that lipid biomarkers can be successfully used to provide evidence of feeding strategy for C. mutica and that the flexibility observed in this strategy may play an important role in its invasion success.  相似文献   

7.
The fatty acid (FA) composition was determined in 14 species of marine macroalgae belonging to the Chlorophyta, Phaeophyta and Rhodophyta, which were collected from ?ile in the Black Sea and Kepez in the Dardanelles. Generally, polyunsaturated FAs and monounsaturated FAs were major components (50–77%). Total saturated FAs ranged from 22% to 50%, with 16?:?0 as the most abundant saturate (32–38%). Two samples of Cystoseira barbata collected from a different station had some differences from each other in their contents of 18?:?2n-6 and 18?:?3n-3 and in the 18?:?2n-6/20?:?4n-6 ratios. Green algal species had a significantly higher proportion of unsaturated FAs and a significantly lower proportion of saturated FAs than the red and brown algae. The amount of n-3 FAs was significantly higher in Ulva rigita, Chaetomorpha linum, Enteromorpha linza and Gracilaria verrucosa (8.88, 6.44, 5.31 and 5.24, respectively).  相似文献   

8.
Many chemicals that are currently used in aquaculture have not been evaluated with regard to their specific effects on the aquatic environment. In the present study, the toxic effects of several chemicals associated with land-based marine fish farming activities were assessed using two species of marine microalgae (Phaeodactylum tricornutum and Isochrysis galbana). Mini-scale toxicity tests were performed with six antibiotics (amoxicillin, ampicillin, flumequine, oxytetracycline, streptomycin and sulfadiazine) and two disinfectants (formaldehyde and hypochlorite). Amoxicillin and streptomycin did not exert toxic effects. Sulfadiazine was the most toxic chemical; the EC50 values were 0.11 mg/L and 1.44 mg/L for P. tricornutum and I. galbana respectively. As expected, the disinfectants displayed high toxicity, and P. tricornutum was particularly sensitive to these compounds. Although the differences in microalgal sensitivity depended on the chemical considered, both species were highly sensitive to most of the compounds tested. We recommend the inclusion of mini-scale microalgal toxicity tests in environmental risk assessment (ERA) and environmental monitoring plans because they are cost-effective and rapid.  相似文献   

9.
The lipid composition of tropical marine reef fishes is poorly known, despite their use as food by local human populations and recent interest in health-related benefits of fish lipids. We examined the composition of lipids from epaxial muscle, liver, and two storage sites [mesenteries surrounding the gut (intraperitoneal fat, IPFs) and retroperitoneal fat bodies (FBs) posterior to the peritoneal cavity] in three species of surgeonfishes from Ishigaki Island, Japan: Naso lituratus (Bloch and Schneider, 1801), Acanthurus lineatus (Linnaeus, 1758), and A. bariene (Lesson, 1830). Triacylglycerols dominated all samples of neutral lipid and constituted ≥ 99% of FBs and IPFs. Polar lipids generally contained large fractions of phosphatidylethanolamine and phosphatidylcholine. Quantified fatty acids ranged in length from C14 to C24. C16 fatty acids prevailed (>35% of neutral fatty acids, >23% of polar fatty acids), although C18 (>16 and >14%, respectively) and C20 acids (>8 and >19%, respectively) were also common. Saturated fatty acids, dominated by palmitic acid (16:0), comprised 38.7 to 50.7% of acids from neutral lipids and 30.8 to 41.1% from polar lipids. The most common monounsaturated acids were 18:1n9 and 20:1n9. Polyunsaturated acids were prevalent in polar lipids (especially 20:4n6, 20:5n3, 22:2n3, 22:5n3, 22:5n6 and 22:6n3). Common polyunsaturated acids of neutral lipids were 18:2n6, 18:4n3, several n-3 and n-6 C20 acids, 22:2n3 and 22:5n3. IPF and FB were almost identical across species, and lipids of fat bodies (IPFs, FBs) were more similar to those of muscle than those of liver for all three species. The FBs appear to constitute an accessory storage site, which overcomes constraints on lipid storage imposed by a small, inflexible abdominal cavity that contains both viscera and consistently voluminous gut contents. Fatty acid signatures indicate that largely overlooked epiphytic or epilithic diatoms contribute significantly to lipid acquisition. The combination of large quantities of both saturated and n-3 and other polyunsaturated fatty acids in surgeonfishes, in contrast to low saturates and high polyunsaturated acids in lipids of commercially important cool-water fishes, suggests that a study of dietary effects of fish lipids on human inhabitants of the tropics may be instructive insofar as human health and nutrition are concerned. Received: 16 March 1998 / Accepted: 6 August 1998  相似文献   

10.
The impact of supplementing lipid emulsions rich in eicosapentaenoic acid (EmEPA), docosahexaenoic acid (EmDHA) or saturated fatty acids (EmCOCO) to a standard algal diet [3:1 mixture of Isochrysis galbana (T-iso) and Chaetoceros neogracile, St-diet] on Argopecten purpuratus broodstock was evaluated. Broodstock fecundity was compared as well as the egg quality in terms of lipid content, fatty acid composition and lipid class distribution. Fecundity was defined as the number of eggs released in the spawning process, since spawning was virtually complete. Results indicated that the total lipid content of the eggs of A. purpuratus was diet independent. A greater energy reserve was spent on a larger number of oocytes and not on bigger sized oocytes with a higher lipid content. The lipids supplied through the emulsions were at least partially allocated to the eggs, demonstrating that the fatty acid composition of the eggs could be manipulated, especially the neutral lipid fraction. Levels of EPA changed more rapidly than DHA levels, supporting the observation that they fulfilled an energetic and structural role, respectively. The St-diet supplemented with 50%EmCOCO resulted in a significantly higher fecundity compared to the algal diet supplemented with 25%EmEPA+25%EmDHA and the non-supplemented algal diet. It would seem that saturated fatty acids (SAFA) were more easily or preferentially incorporated in the female gonads of A. purpuratus. The relative content of SAFA and 18:2( n-6) in these eggs rose significantly. The relative content of the highly unsaturated fatty acids, EPA and DHA, on the other hand was substantially lower in the neutral lipid fraction, but hardly affected in the polar lipid fraction. It appeared that the maintenance of an adequate DHA/EPA ratio (approximately 1.2) was more important than the absolute levels of the two fatty acids, as long as a threshold value was reached.  相似文献   

11.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

12.
Larval growth rate and settlement of the European flat oyster Ostrea edulis were experimentally studied as a function of the composition of dietary fatty acids. Diets differing in fatty acid composition were composed by mixtures of the microalgae Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans. Fatty acid content in the tissue of the feeding larvae, analyzed by gas chromatography and mass spectrometry, reflected the composition in the diet. Larval growth rate was significantly correlated to the three omega-3 polyunsaturated fatty acids (PUFA) C18:3, C18:4 and C22:6, with minor differences for neutral and polar lipids. No relation between growth rate and the omega-3 PUFA C20:5 was detected, a PUFA often implied as essential for bivalves. It is suggested that naturally occurring variability in fatty acid composition may constrain larval growth. In settlement experiments in both still water and flume flow little substrate selectivity was found for some contrasting substrates. It is concluded that differences in dietary fatty acids may explain as much of settlement success as the variability of substrates. Received: 12 October 1998 / Accepted: 6 April 1999  相似文献   

13.
Changes in total lipids, lipid classes and their fatty acid contents were studied in the ovaries and midgut glands ofPenaeus kerathurus Forskäl females during sexual maturation. The shrimp were captured in the Gulf of Cádiz (southwest Spain) in 1990. The lipid content and fatty acids, in relative terms, increased during ovarian development. The greatest changes occurred between Maturation Stages III and IV. Ovarian lipids were dominated by polar classes, whereas in the midgut gland the major classes were triacylglycerols and sterol esters. The amounts of major fatty acids in ovaries (16:0, 16:1n-7, 18:1n-9, 18:1n-7, 20:5n-3 and 22:6n-3) increased with increasing maturity, but declined slightly between Stages III and IV. The total polar lipid content of the midgut was 5.7% (by dry weight) and its fatty acid composition remained constant during the whole study period. Total lipid content of the midgut gland showed an upward trend during sexual maturation, except between Stages II and III, when a slight decrease was observed. Predominant fatty acids in the midgut gland (16:1n-7, 20:5n-3 and 22:6n-3) displayed a noteworthy decline between Stages II and III, corresponding with the marked increase in total lipid fatty acid content in the ovaries during the same period.  相似文献   

14.
The fatty acid composition of 9 different tissues and organs of the female horseshoe crab Xiphosura (Limulus) polyphemus — one of the very few recent representatives of the ancient arthropod class Merostomata — was investigated in reference to the distribution of fatty acids through the marine food web. Fatty acid spectra, in which polyunsaturated fatty acids are predominant, especially eicosapentaenoic acid (20:5 3), revealed features characteristic of marine lipids. However, rather large quantities of monoenoic fatty acids also occur in all organs. In the saturated fatty acid fractions, the high content of branched-chain components is worth noticing, particularly in the gills and the carapace (35%); in all probability, the high amount of the branched-chain fatty acids is associated with their protective function in surface lipids. Isoprenoid fatty acids such as pristanic and phytanic acid were absent.  相似文献   

15.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

16.
Grazing rates and electivity indices of larvae and spat of Ostrea edulis L. were, measured and examined in relation to certain physical parameters using a flow-through system. Retention and size-selection were determined for the major particle sizes present in cultures of Isochrysis galbana Parke, an alga used frequently as food for bivalves. Cultures of the algae Dunaliella tertiolecta Butcher and Phaeodactylum tricornutum Bohlin were used as sources of particle suspensions of various sizes and shapes, respectively. While increases in flow rate caused increased grazing, the mode of selection of I. galbana particles remained constant. Filtration rate, F f was related to body size, W, by the general allometric equation R f =aW b,while particle-size preference in suspensions of I. galbana by both larvae and spat of O. edulis was independent of W. Grazing rates increased with temperature to an optimum temperature, which was related to the acclimation temperature. Increases above this optimum caused a reduction in feeding activity. No significant change in particle size-preference in the I. galbana suspension with temperature was observed. Grazing rates and selection were dependent, however, on particle number and volume. Both larvae and spat displayed maximum retention at optimum particle concentrations which tended to decrease with increasing particle size. Variations in cell shape of P. tricornutum had no measurable effect on selectivity by O. edulis.  相似文献   

17.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

18.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

19.
Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1(n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.  相似文献   

20.
Juvenile salmon exhibit high growth rates upon their arrival into the marine environment. Dietary changes from freshwater and estuarine habitats to those derived from the marine environment may play an important role in ultimate adult survival. We measured the total lipid and fatty acid (FA) composition of juvenile Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and 18 of their potential prey items sampled from coastal waters during their first few months at sea. Coho salmon had significant reductions in their lipid content (% wet weight) between May and June, likely due to early marine growth. We did not find a significant drop between May and June Chinook salmon lipid content, which may indicate an earlier ontogenetic selection to marine prey that are higher in lipids and essential fatty acids (EFAs). Juvenile salmon ate prey of both high and low lipids. Significant FA compositional changes occurred for both coho and Chinook salmon between May and June. In May, the FA profile of juvenile salmon, especially coho salmon, did not resemble their prey items; however, in June, there was a strong correlation between salmon and their common fish prey as determined by gut content analysis. Significant increases in the level of EFAs, especially docosahexaenoic acid (DHA, 22:6n-3) accounted for the majority of the monthly differences in salmon tissue FA composition. In order for juvenile salmon to adequately meet their physiological requirements, they may have adapted to select advantageous prey with higher levels of EFAs, especially DHA, in order to rapidly increase their growth and ultimate survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号