首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 953 毫秒
1.
国内加油站油气排放控制现状及对策研究   总被引:1,自引:0,他引:1  
为消除加油站油气污染问题,分析了我国加油站的油气排放控制现状及其存在的问题,介绍了加油站的油气排放控制(回收工艺技术).分析了每个回收工艺技术中存在的问题,并提出了实行上岗前培训,加强管理监督,定期检修,就地处理一次回收的油气,以及不同加油站因地制宜地安装配套的油气回收设备等对策,为加油站的油气排放控制提供参考.  相似文献   

2.
我国GB 20952-2007《加油站大气污染物排放标准》首次提出加油站安装油气处理装置,但是部分油气回收从业人员对油气处理装置的作用存在一些认识误区.通过对美国加州加油站油气处理装置的发展历程进行回顾,阐述加油站油气处理装置的作用,并对油气处理装置VOCs(挥发性有机物)的排放现状进行全口径检测和分析.结果表明:①油气处理装置是加油站油气回收系统的重要组成部分,主要用于控制Stage Ⅰ(卸油油气回收系统或第一阶段油气回收系统)和Stage Ⅱ(加油油气回收系统或第二阶段油气回收系统)工作时埋地油罐压力增加所导致的无组织排放,但它不能取代Stage Ⅰ.②2016-2018年北京市油气处理装置NMHC(非甲烷总烃)排放浓度分别为5.43、3.67和2.30 g/m3,达标率由98.5%升至99.7%;春、夏、秋、冬四季NMHC平均排放浓度分别为3.54、4.68、3.13和1.64 g/m3,其中夏季NMHC排放浓度最高;"吸附"和"冷凝+膜"处理效果略优于"膜分离".③2017年北京市油气处理装置NMHC排放浓度相对于排放标准(≤ 20 g/m3)的达标率为97.6%,NMHC排放浓度≤ 10 g/m3的比例为90.4%.研究显示,加油站油气处理装置是埋地油罐压力控制装置,为减少油罐及其附属设施的无组织排放发挥了重要作用,值得进一步开展研究.   相似文献   

3.
介绍了美国CARB加油站油气回收法规的现状和核心内容,简述了其发展历程、出现的问题和产生的影响。对比了美国与中国加油站油气回收法规,并重点研究了CARB关于油气回收系统效率和排放因子的检测方法,对国内相关标准、规范的修订提出了建议,指出我国油气回收发展应设立产品认证体系,加强国内相关法律法规的研究,建设高水平的实验室,在国标和行标的编制中做好充分的调研论证和综合分析。  相似文献   

4.
通过对已进行油气回收改造加油站的现场测试,发现在使用过程中存在的问题,利用软件模拟了卸油及加油油气回收的管道阻力,找出了卸油速度慢及加油油气回收能耗偏高的原因,同时分析了卸油、加油及油气排放处理环节的经济指标,给出了提高加油站油气回收系统效果的建议措施.  相似文献   

5.
加油站在日常运行过程中排放的油气对城市及工作环境产生很大的影响。油气回收系统在加油站的应用已经明显的提高加油环境与周边环境质量,从而达到保护人身健康、降低环境污染及节能减排的效果。在对北京地区部分加油站二次油气回收系统现场检测的过程中,根据实际情况总结出加油站油气回收系统正常有效运行的影响因素,并针对影响因素提出相应的改进措施与合理化建议。  相似文献   

6.
针对近年来加油站三次油气回收设备排放频繁超标的问题,对加油站已投用的三次油气回收设备进行调研分析,找出导致三次油气回收设备排放超标的原因,通过数据模拟对相关结论进行验证,提出解决三次油气回收设备超标排放问题的技术提升措施。  相似文献   

7.
油气回收技术在加油站中的应用   总被引:9,自引:0,他引:9  
介绍了加油站油气回收的意义、油气回收系统的工艺原理及油气回收系统性能的检测方法.对油气回收系统设备的安装进行了说明,并对油气回收的综合利用提出了建议。  相似文献   

8.
加油站汽油销售量随机动车保有量同步快速增长,并已成为北京市VOCs主要来源之一. 为准确估算加油站VOCs排放,在比较国内外加油站VOCs排放因子的基础上,结合北京市加油站油气治理过程,估算北京市1990—2014年加油站VOCs排放清单,并预测2015—2030年排放清单. 结果表明:①中国、US EPA(美国国家环境保护局)和EEA(欧洲环境署)的加油站VOCs未控制排放因子分别是CARB(美国加州空气资源委员会)排放因子的1.78、1.38和0.85倍;②根据CARB排放因子和北京本地油气治理措施计算得到北京市2003年、2008年和2030年VOCs加权排放因子,分别为2 103、263和80 mg/L,2008年和2030年控制效率分别为2003年的88%和96%;③2003年加油站VOCs排放量达到峰值(5 134 t/a),在北京市实施DB 11/208—2003《加油站油气排放控制和限值》后,2008年VOCs排放量减至1 195 t/a,城六区排放量约占全市的60%;④《北京市2013—2017年清洁空气行动计划》实施后,预测2017年、2022年和2030年的VOCs排放量分别为1 252、976和531 t/a,2030年汽油消费量是1990年的8.8倍,但VOCs排放量仅为1990年的34%. 研究显示,北京市加油站油气回收工作为加油站VOCs减排做出了巨大贡献.   相似文献   

9.
加油站油气回收系统是由卸油油气回收系统、汽油密闭储存、加油油气回收系统、在线监测系统和油气排放处理装置组成。该系统的作用是将加油站在卸油、储油和加油过程中产生的油气,通过密闭收集、储存和送入油罐汽车的罐内,运送到储油库集中回收变成汽油,以达到在汽车加油、油料储运过程中油汽不外泄,不污染周边环境的目的。根据中华人民共和国《加油站大气污染物排放标准》(GB 20952-2007)中第六条的规定,长三角地区的改造项目应在2010年1月1日进行,因此对加油站油气回收系统的监测显得十分紧迫。  相似文献   

10.
简述了加油站二次油气回收系统的原理及检测,重点对2014至2016年期间佛山市加油站油气回收治理现状及检测情况进行综合分析,并对日后环保部门的管理对策提出几点建议。  相似文献   

11.
中国加油站VOC排放污染现状及控制   总被引:17,自引:9,他引:8  
沈旻嘉  郝吉明  王丽涛 《环境科学》2006,27(8):1473-1478
应用排放因子法估算了2002年度全国加油站VOC的排放量.在综合考虑经济,社会,人口等各方面因素后,通过调整现有的活动水平估算了未来20a内全国的燃油消耗情况,以及VOC排放的增长趋势.结果表明:2002年我国加油站VOC排放量为187.6×103t,由此造成的经济损失达到了7.5×108元人民币.在维持现有控制水平情况下,到2030年VOC排放量将达到1196×103t,经济损失高达47.8×108元人民币.比较了StageⅠ、StageⅡ油气回收系统以及ORVR的回收效率和成本,并对其可行性和经济适用性进行分析.结果表明:这3种回收技术的引进将会大规模的消减加油站VOC的排放,并且选择性的措施组合能够取得更好的效果.相对于StageⅡ回收系统,ORVR的效率更高费用更低.但是ORVR的引进需要比StageⅡ更长的时间,为了达到80%的普及率至少需要11a左右.为在短期内达到一定的控制要求,可优先考虑StageⅡ回收技术;但是从长期的环境和经济效应来看,ORVR才是最终的选择.  相似文献   

12.
对不同的油气回收技术进行了分析比较。分析了冷凝法、吸收法、吸附法、膜分离法对油气回收的优缺点。及回收效果影响因素。认为油气回收装置的应用将为石化企业带来明显的社会、环境效益及经济效益。  相似文献   

13.
对某地区4个加油站的油气回收改造效果进行了抽样检测。重点对一次油气回收中的回气量、回气浓度、回气压力和卸油速度以及二次油气回收中的密闭性、液阻和气液比等指标进行了测试,分析了存在的问题,并提出了相应的改造措施和建议。  相似文献   

14.
为应对愈发严格的环保排放标准,使用新型膜分离技术回收轻质油品蒸发出来的油气。介绍了膜分离工艺的基本原理、系统组成、工艺特点等。以橡胶态膜作为核心分离组件,自行设计了"膜法+吸附法"油气回收工艺,在油库搭建了500 m3/h的膜法油气回收装置。现场应用结果表明,装置运行可靠,工艺简单,占地面积小,安全性高,能够较好地满足国家各项标准的要求。  相似文献   

15.
吸附法加油站 油气排放处理装置研发   总被引:1,自引:0,他引:1  
在对吸附法油库油气回收装置分析的基础上,提出了活性炭吸附法在加油站油气回收中的应用工艺,较好地解决了吸收装置占用场地的限制,增加了吸附的效率。  相似文献   

16.
港口油气污染扩散及源强计算方法的探讨   总被引:3,自引:2,他引:3  
吴维平 《交通环保》1999,20(6):11-15,38
系统分析了港口油气污染扩散的特点式,对油港油原强及扩散速率计算方法进行了研究和验证,对适用国内油港油气扩散模拟源强公式及计算方法进行了探讨。  相似文献   

17.
典型炼化企业温室气体甲烷排放特征   总被引:1,自引:1,他引:0  
温室气体排放是造成全球变暖和气候恶化的重要根源.甲烷是仅次于二氧化碳的温室气体组分.石油加工过程是潜在的甲烷排放源.本文以我国广西某炼化企业为样本,通过现场采样和离线分析的方法,识别出炼化企业潜在的甲烷排放源,核算了不同排放源的甲烷排放量,分析了炼化企业的甲烷排放特征.研究表明,甲烷是炼化企业排放废气中的重要成分;烟气、污水收集和处理系统、储罐和油品装卸过程等均是重要的甲烷排放源项,其中烟气和储罐对甲烷排放总量贡献占比超过70%;不同源项甲烷排放特征各异,油品装载过程产生废气甲烷浓度最高;污水处理过程废气的甲烷浓度主要受常减压装置污水影响;该炼化企业每万吨原油对应的甲烷排放速率估算值为72.6 kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号