首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The degradation of α and β isomers of endosulphan and endosulphan sulphate in four sterilized and non sterilized Indian soils under laboratory conditions was studied. Degradation was found to be more in non‐sterilized as compared to the sterilized soil. The half life of α‐endosulphan, β‐endosulphan and endosulphan sulphate was found to be 136.8, 273 and 301 days in sterilized Alfisol and 55, 256 and 277 days in non‐sterilized Alfisol, respectively. α‐Endosulphan degraded more readily than β‐endosulphan and endosulphan sulphate under both sterilized and non‐sterilized soil conditions.  相似文献   

2.
Laboratory studies were undertaken to evaluate the persistence of alpha-endosulphan, beta-endosulphan and endosulphan sulphate in four diverse soils under non-flooded and flooded conditions. Significant variations were observed in the extent of persistence of the three chemicals in different non-flooded soils with maximum persistence observed in Alfisol and the least in Mollisol having near neutral pH and higher organic matter. Degradation was more in all the flooded soils than in the non-flooded counterpart but in Vertisol under flooded and non-flooded conditions, the rate of degradation of endosulphan sulphate was found to be nearly same.  相似文献   

3.
Bioavailability and degradation of phenanthrene in compost amended soils   总被引:1,自引:0,他引:1  
Bioavailability in soil of organic xenobiotics such as phenanthrene is limited by mechanisms of diffusion of the xenobiotics within soil micropores and organic matter. The agricultural utilization of compost may reduce the risk connected to organic xenobiotic contamination by means of: (i) a reduction of the bioavailable fraction through an increased adsorption and (ii) an enhanced degradation of the remaining bioavailable fraction through an inoculum of degrading microorganisms. Aim of this work is to test this hypothesis by assessing the effects of compost amendment on the bioavailability and degradation of phenanthrene in soil. Experiments were carried out in both sterilized and non-sterilized conditions, and chemical and microbiological analyses were carried out in order to determine the extent of degradation and bioavailability and to monitor the evolution of the soil micro flora in time. Bioavailability was assessed in sterilized microcosms, in order to assess the physical effects of compost on aging processes without the influence of microbial degradation. Results showed that bioavailability is significantly reduced in soils amended with compost, although no differences were found at the 2 doses of compost studied. In non-sterilized soils the amount of phenanthrene degraded was always higher in the amended soils than in the non-amended one. Microbiological analyses confirmed the presence of a higher number of phenanthrene degraders in the amended soils and in samples of compost alone. These results suggest that compost induces the degradation in soils of easily degradable compounds such as phenanthrene, when the proper bacteria are in the compost; more resistant xenobiotics may instead be trapped by the compost organic matter, thus becoming less available.  相似文献   

4.
Leaching and degradation of ethametsulfuron-methyl in soil   总被引:4,自引:0,他引:4  
Si Y  Wang S  Zhou J  Hua R  Zhou D 《Chemosphere》2005,60(5):601-609
Leaching and degradation of the herbicide ethametsulfuron-methyl[methyl 2-[(4-ethoxy-6-methylamino-1,3,5-triazine-2-yl)carbamoylsulfamoyl]benzoate] in three soils were investigated under laboratory conditions. Ethametsulfuron-methyl was mobile on soils when tested using non-aged and aged soil columns; this mobility agreed reasonably well with Freundlich soil isotherm constants. It was found that ethametsulfuron-methyl was more mobile in alkaline sandy Vertisol soil and neutral loamy Alfisol soil than in acidic clayey Red soil. Degradation of ethametsulfuron-methyl in soils was pH-dependent; calculated half-life (t(1/2)) values ranged from 13 to 67 days. Ethametsulfuron-methyl was more persistent in neutral or weakly basic than in acidic soil. Five soil metabolites were isolated and identified by LC/MS/MS analysis. The degradation pathways included the cleavage of the sulfonylurea bridge, N- and O-dealkylation, and triazine ring opening.  相似文献   

5.
The degradation of the herbicide acetochlor, in a neoluvisol and in a calcosol were studied as a function of depth (0-25cm and 25-50cm) and temperature (25 degrees C and 15 degrees C) under controlled laboratory conditions during 58 and 90 days, respectively. The surface and sub-surface soil samples were respectively spiked with 1 and 0.01mgkg(-1) of 14C-acetochlor, the concentrations observed in previous field monitoring. The half-lives (DT50) varied from 1.4 to 14.9 days depending on the soil, temperature and applied concentration. The maximal mineralization (24%) was observed for the surface calcosol at 25 degrees C. The comparison of results obtained for sterilized and non-sterilized soils, the decrease of DT50 with the increase of temperature, the shape of CO2 emissions and the increase of number of aerobic endogenous microflora through the experiment suggested that biological process are dominant in degradation. A particular attention was paid to the formation and dissipation of metabolites ESA (ethanesulphonic acid) and OA (oxanilic acid) during the whole experiment. At 25 degrees C, ESA and OA were observed after three days, but as ESA concentration decreased over time in surface calcosol, it remained constant in surface neoluvisol. A difference in ESA/OA ratio depends on the soil with a predominance of OA in surface neoluvisol and a disappearance of OA in surface calcosol.  相似文献   

6.
Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4-methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

7.
The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.  相似文献   

8.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

9.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

10.
Abstract

The effects of temperature and solar radiation on dissipation of 14C‐p,p'‐DDT from a latosol soil were studied under laboratory conditions. Volatilization was measured by trapping organic volatiles during 6 weeks and was found to increase with rise of temperature from 3.8% of initial amount at ambient temperature to 5.9% at 45°C.

Studies on the effect of solar radiation using quartz tubes under sterilized and non‐sterilized conditions have shown that volatilized organics were highest in quartz tubes, with soil microflora presumably playing a very minor role in volatilization. Mineralization was shown to be low in sterilized systems and highest in non‐sterilized quartz systems. Studies on binding suggest that soil bioactivity may be involved in the formation of a portion of the bound residue. These laboratory experiments seem to support data from the field, where it is maintained that volatilization is a major mechanism for dissipation. Degradation in soil and to a lesser extent solar irradiation contribute also substantially to the dissipation mechanisms. Radiocarbon dissipated from plywood surfaces under indoor conditions in a biphasic fashion. Loss of 50% occurred after 5.5 weeks while the remainder dissipated at a very slow rate.  相似文献   

11.
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95?±?1.16 mg/L (original non-sterilized sediments), 32.50?±?0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50?±?1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00?±?0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50?±?10 μg/L (original non-sterilized sediments) to 110?±?45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.  相似文献   

12.
Soil dissipation of the herbicide clopyralid (3,6-dichloropicolinic acid) was measured in laboratory incubations and in field plots under different management regimes. In laboratory studies, soil was spiked with commercial grade liquid formulation of clopyralid (Versatill, 300 g a.i. L(-1) soluble concentrate) @ 0.8 microg a.i. g(-1) dry soil and the soil water content was maintained at 60% of water holding capacity of the soil. Treatments included incubation at 10 degrees C, 20 degrees C, 30 degrees C, day/night cycles (25/15 degrees C) and sterilized soil (20 degrees C). Furthermore, a field study was conducted at the Waikato Research Orchard near Hamilton, New Zealand starting in November 2000 to measure dissipation rates of clopyralid under differing agricultural situations. The management regimes were: permanent pasture, permanent pasture shielded from direct sunlight, bare ground, and bare ground shielded from direct sunlight. Clopyralid was sprayed in dilute solution @ 600 g a.i. ha(-1) on to field plots. Herbicide residue concentrations in soil samples taken at regular intervals after application were determined by gas chromatograph with electron capture detector. The laboratory experiments showed that dissipation rate of clopyralid was markedly faster in non-sterilized soil (20 degrees C), with a half-life (t1/2) of 7.3 d, than in sterilized soil (20 degrees C) with t1/2 of 57.8 d, demonstrating the importance of micro-organisms in the breakdown process. Higher temperatures led to more rapid dissipation of clopyralid (t1/2, 4.1 d at 30 degrees C vs 46.2 d at 10 degrees C). Dissipation was also faster in the day/night (25/15 degrees C) treatment (t1/2, 5.4 d), which could be partly due to activation of soil microbes by temperature fluctuations. In the field experiment, decomposition of clopyralid was much slower in the shaded plots under pasture (t1/2, 71.5 d) and bare ground (t1/2, 23.9 d) than in the unshaded pasture (t1/2, 5.0 d) and bare ground plots (t1/2, 12.9 d). These studies suggest that environmental factors such as temperature, soil water content, shading, and different management practices would have considerable influence on rate of clopyralid dissipation.  相似文献   

13.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

14.
Jézéquel K  Perrin J  Lebeau T 《Chemosphere》2005,59(9):1323-1331
In order to reduce the cadmium potentially available for plants, soil bioaugmentation was performed by using a Bacillus sp. In a pot experimentation, sterilized and non-sterilized soils were inoculated using free or immobilized cells entrapped in alginate beads. This test was carried out with different inoculum sizes (2 x 10(10) and 2 x 10(11)CFU kg(-1) dw of soil) and alginate bead compositions (10 and 15 g of both alginate and CaCl(2) l(-1)). Then, the soil pots were incubated at 20 degrees C and the soil humidity was kept at a level of 20%. After 3 weeks of a batch incubation, the potentially phytoavailable Cd was reduced up to a factor of 14. The bioaugmentation resulted in the soil colonization by Bacillus sp. thanks to an increase of the cell concentration up to 1.8 log units. However, in comparison to the cells being inoculated in a free mode, the immobilization of the cells did not significantly improve the survival of the cells in the soil. Although the resulting effect not being highly pronounced, the potentially phytoavailable Cd correlated with the cell concentration in a surprisingly positive way. What is more, the Bacillus concentrations in the soil were positively correlated with the inoculum, too.  相似文献   

15.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

16.
Persistence of hexaconazole, a triazole fungicide in soils   总被引:1,自引:0,他引:1  
Persistence of hexaconazole (2-(2,4-dichlorophenyl)- 1-(1H-1,2,5-triazol-1-yl) hexan-2-ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27 degrees C than at 35 degrees C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro-organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

17.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

18.
The dissipation of hexazinone (Velpar) in two tropical soil types in Kenya was studied under field and semi-controlled conditions for a period of 84 days. The dissipation was found to be very rapid and this could be attributed to adverse weather conditions including high initial rainfall as well as to low soil-organic-matter content, volatilization, surface run-off and biodegradation. The DT50 values of dissipation obtained by first order kinetics were 20 days and 21.3 days in clay and loam soil types, respectively. The influence of bargasse compost (1000 μg/g dry soil) was also studied and was found to enhance dissipation to some extent, giving DT50 values of 18 days and 18.3 days in clay and loam soil types, respectively.  相似文献   

19.
Contamination of soil with hydrocarbons occurs frequently when petroleum ducts are damaged. Restoration of those contaminated soils might be achieved by applying readily available organic material. An uncontaminated clayey soil sampled in the vicinity of a duct carrying diesel which ruptured recently, was contaminated in the laboratory and amended with or without maize or biosolids while production of carbon dioxide (CO(2)), dynamics of ammonia (NH(4)(+)), nitrates (NO(3)(-)), and total petroleum hydrocarbons (TPH) were monitored. The fastest mineralization of diesel, as witnessed by production of CO(2), was found when biosolids were added, but the amount mineralized after 100 days, approximately 88%, was similar in all treatments. Approximately 5 mg of the 48 mg TPH kg(-1) found in the sterilized soil at the beginning of the experiment could not be accounted for after 100 days. The concentration of TPH in the unsterilized soil decreased rapidly in all treatments, but the rate of decrease was different between the treatments. The fastest decrease was found in the soil amended with biosolids and approximately 30 mg TPH kg(-1) or 60% could not be accounted for within 7 days. The decrease in concentration of TPH at the onset of the incubation was similar in the other treatments. After 100 days, the concentration of TPH was similar in all soils and appear to stabilize at 19 mg TPH kg(-1) soil. It was concluded that biosolids accelerated the decomposition of diesel and TPH due to its large nutrient content, but after 100 days the amount of diesel mineralized and the residual concentration of TPH was not affected by the treatment applied.  相似文献   

20.
Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号