首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.  相似文献   

2.
Most presettlement reef fish settled at night at One Tree Island, Great Barrier Reef. Fish were sampled day and night using channel nets located on the reef crest, and a plankton-mesh purse-seine net in the lagoon (1992–1994). Catches of fish at night were generally tens to hundreds of times greater than those taken during the day. Preflexion fish, as well as postflexion and pelagic juveniles, were taken in greater numbers at night. Preflexion forms were a combination of those that had hatched from demersal eggs and later stages that had been transported over the reef crest. Highest numbers of postflexion and pelagic juvenile forms of Apogonidae, Blenniidae, Gobiesocidae, Gobiidae, Labridae, Lutjanidae, Mugiloididae, Mullidae, Pomacentridae, Scaridae, Serranidae and Tripterygiidae were found at night. Observations, while SCUBA diving, and purse-seine samples in the lagoon indicated that the only resident larvae were of the genera Spratelloides and Hypoatherina; most of the fishes caught in nets, therefore, were immigrants. Patch reefs, sampled for new settlers early in the morning and late in the day, indicated that the majority of apogonids (Apogon doederleini, >95%) settled at night. Although greater numbers of pomacentrids were found in morning counts (e.g. Pomacentrus wardi), if data were converted to an hourly rate, many pomacentrids showed a similar hourly rate of settlement day and night. Depth-stratified sampling in waters near One Tree Island (to 20 m) indicated that some taxa rise to the surface at night. This behaviour, perhaps combined with avoidance of diurnal predators may explain on-reef movement of potential settlers soon after dark. Studies on settlement cues, therefore, need to focus on night-related phenomena. Received: 3 March 2000 / Accepted: 20 June 2000  相似文献   

3.
Nitrogen fixation on a coral reef   总被引:9,自引:0,他引:9  
Acetylene reduction was used to assess nitrogen fixation on all major substrates at all major areas over a period of 1 to 6 yr (1980–1986) at One Tree Reef (southern Great Barrier Reef). Experiments using 15N2 gave a ratio of 3.45:1.0 for C2H2 reduced:N2 fixed. Acetylene reduction was largely light-dependent, saturated at 0.15 ml C2H2 per ml seawater, and linear over 6 h. High fixation was associated with two emergent cyanophyte associations, Calothrix crustacea and Scytonema hofmannii, of limited distribution. Subtidally, the major contribution to nitrogen fixation came from well-grazed limestone substrates with an epilithic algal community in the reef flat and patch reefs (3 to 15 nmol C2H4 cm-2 h-1). Similar substrates from the outer reef slope showed lower rates. Nitrogen fixation on beach rock, intertidal coral rubble, reef crest and lagoon sand was relatively small (0.3 to 1.0 nmol C2H4 cm-2 h-1). Seasonal changes in light-saturated rates were small, with slight reduction only in winter. Rates are also reported for experimental coral blocks (13 to 39 nmol cm-2 h-1) and for branching coral inside and outside territories of gardening damselfish (3 to 28 nmol cm-2 h-1). This work supports the hypothesis that the high nitrogen fixation on the reef flat and patch reefs of the lagoon (34 to 68 kg N ha-1 yr-1) is because these subtidal areas support highly disturbed communities with the greatest abundance of nitrogen-fixing cyanophyte algae. It is calculated from a budget of all areas that One Tree Reef has an annual nitrogen fixation rate of 8 to 16 kg N ha-1 yr-1.  相似文献   

4.
Opportunity and recognition isolation can lead directly to reproductive isolation, the former via divergence in the location and timing of breeding, and the latter via differential mate preferences. We describe the potential significance of these factors in the maintenance of reproductive isolation in a clade of triplefin fishes that occur sympatrically around coastal New Zealand. Specifically, we investigate the roles of spawning time and nesting habitat in promoting opportunity isolation, and of interspecific variation in male body length and breeding colouration in promoting recognition isolation. The triplefin species investigated are reproductively active over several months and show high overlap in breeding times, thus rejecting temporal isolation as a mechanism. Differences in nesting habitats resulted in a reduced probability of encounter between some species, especially between sister-species pairs. Interspecific colour differences generally decreased during the reproductive period, and males of sister-species pairs showed no interspecific colour differences in the ultraviolet light spectrum, thus mate selection based on male colour patterns is unlikely to lead to premating isolation. Finally, males of closely related triplefin species differed in body length, a secondary sexual trait often involved in assortative mating. Thus, spatial differences in nesting habitats reduce the chances of encountering allospecific mates, which may facilitate opportunity isolation and differences in male length, possibly related to species-specific female selection on male body size, may lead to recognition isolation. The combination of limited spatial overlap in nesting habitat and differences in male body size may facilitate species assortative mating in sympatry or parapatry.  相似文献   

5.
Demographic plasticity in tropical reef fishes   总被引:2,自引:0,他引:2  
N. Gust  J. Choat  J. Ackerman 《Marine Biology》2002,140(5):1039-1051
We use age-based analyses to demonstrate consistent differences in growth, mortality, and longevity of coral reef fishes from similar habitats (exposed reef crests) 20 km apart. On outer-shelf reef crests of the northern Great Barrier Reef (GBR), size in four taxa of reef fishes (Chlorurus sordidus, Scarus frenatus, and S. niger and the acanthurid Acanthurus lineatus) was systematically and significantly smaller when compared with the same taxa on adjacent mid-shelf reef crests. Differences in size could be attributed to differences in growth between habitats (shelf positions). On outer reef crests the species examined had consistently lower size at age profiles and also reduced life spans compared with populations from mid-shelf reefs. To confirm this relationship, two of the most abundant species (C. sordidus and S. frenatus) were selected for more detailed spatial analysis of demographic patterns. Sampling adults of both taxa from reef crests on three mid- and three outer-shelf reefs revealed that most of the variation in growth was explained by shelf position, although C. sordidus also displayed differences in growth among mid-shelf reefs. We conclude that differences in body sizes across the continental shelf of the northern GBR are primarily determined by these trends in growth. Strong spatial patterns also existed in the mean ages of populations and longevity estimates for C. sordidus and S. frenatus between shelf positions. Both species on outer-shelf reefs displayed less variable cohort sizes, significantly reduced mean ages, and foreshortened longevity compared with populations on mid-shelf reefs. Furthermore, differences in these parameters were rare among replicate reefs within mid- and outer-continental-shelf positions. Age-based catch curves suggested that rates of S. frenatus natural mortality on the outer shelf were nearly twice as high as on the mid shelf. Visual surveys indicated that total scarid densities on outer-shelf reef crests are on average fourfold higher than for equivalent mid-shelf habitats. This fact, coupled with significantly reduced growth rates, reduced mean ages, and increased mortality rates, suggests that density-dependent processes may be responsible for observed differences among localities.  相似文献   

6.
Identifying the rates of recovery of fish in no-take areas is fundamental to designing protected area networks, managing fisheries, estimating yields, identifying ecological interactions, and informing stakeholders about the outcomes of this management. Here we study the recovery of coral reef fishes through 37 years of protection using a space-for-time chronosequence of four marine national parks in Kenya. Using AIC model selection techniques, we assessed recovery trends using five ecologically meaningful production models: asymptotic, Ricker, logistic, linear, and exponential. There were clear recovery trends with time for species richness, total and size class density, and wet masses at the level of the taxonomic family. Species richness recovered rapidly to an asymptote at 10 years. The two main herbivorous families displayed differing responses to protection, scarids recovering rapidly, but then exhibiting some decline while acanthurids recovered more slowly and steadily throughout the study. Recovery of the two invertebrate-eating groups suggested competitive interactions over resources, with the labrids recovering more rapidly before a decline and the balistids demonstrating a slower logistic recovery. Remaining families displayed differing trends with time, with a general pattern of decline in smaller size classes or small-bodied species after an initial recovery, which suggests that some species- and size-related competitive and predatory control occurs in older closures. There appears to be an ecological succession of dominance with an initial rapid rise in labrids and scarids, followed by a slower rise in balistids and acanthurids, an associated decline in sea urchins, and an ultimate dominance in calcifying algae. Our results indicate that the unfished "equilibrium" biomass of the fish assemblage > 10 cm is 1100-1200 kg/ha, but these small parks (< 10 km2) are likely to underestimate pre-human influence values due to edge effects and the rarity of taxa with large area requirement, such as apex predators, including sharks.  相似文献   

7.
Experimental etching with hydrofluoric acid indicated that silica deposition occurs in a recognizable pattern in common sponge microscleres. The postdepositional alteration of these spicules has previously been generally unrecognized or misinterpreted in the literature. Early stages of postdepositional etching of sponge spicules were observed in the acid insoluble fraction of sediments from the West Atlantic barrier reef near Carrie Bow Cay, Belize. Preliminary data on silica distribution in the Belize barrier reef show that concentrations in fine sediment (<0.25 mm) increase landward of the main reef tract. Sponge spicules are the main component of particulate silica in sediments of the reef and fore-reef where sponge populations abound, whereas grains prevail in the back-reef lagoon deposits. Recycling of locally dissolved silica appears to be important for the growth of many off-shore reef sponges.  相似文献   

8.
Coral reef lagoons have generally been regarded as sinks for organic matter exported from more productive reef front and reef flat zones. The object of this study was to examine the importance of detritus as a carbon source for benthic communities in the lagoon at Davies Reef, central Great Barrier Reef. We report the results of seasonal measurements, taken in 1986, of bacterial numbers and production, protozoan numbers, community primary production and respiration in the sediments of Davies Reef lagoon. Deposition rates of organic matter in the lagoon were also measured. Deposition rates (±1 SE) of carbon ranged from 9.2 (±1.5) to 140.7 (±10.3) mg Cm-2d-1. Deposition rates were highest in winter and spring, lowest in summer. Rates of bacterial production ranged from 4.7 (±0.2) pmol thymidine incorporated g-1 dry wt (DW) h-1 in winter to 23.5 (±1.0) pmol thymidine incorporated g-1 DW h-1 in spring. The number of ciliates ranged from 65 (±10) to 356 (±50) cm-3 through the year and the number of large (20 m) flagellates from 38 (±7) to 108 (±16) cm-3. There were no clear relationships between the sediment organic content, detrital input or temperature and the rates of bacterial processes, community metabolism or the standing stocks of microbes in the lagoon. The relative significance of detritus and in situ primary production as sources of carbon in the lagoon varied with season. In summer and autumn, detritus was less important than primary production as a source of carbon (4 to 27% of total carbon input). In winter and spring, detritus input became more significant in supply of carbon to the sediments (32 to 67% of the total carbon input). The lagoon does not simply act as a sink for carbon exported from the reef flat. We calculate that only 5% of the net reef flat primary production reached lagoon sediments in summer, but nearly 40% in winter.  相似文献   

9.
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration.  相似文献   

10.
The calcium carbonate budget of coral reefs is the result of the interaction of the processes of calcification and biological degradation, and is reflected in the chemical properties of the seawater overlying the reefs. A series of experiments at Moorea Island (French Polynesia) in 1988 monitored the diurnal and nocturnal variations in the chemical properties of seawater under field and laboratory conditions. Our results revealed that in the study area (Tiahura barrier reef flat), the calcium carbonate budget varied over space and time as a function of location in the water current. Two in-situ sites were investigated; one was situated 100 m from the algal crest of the barrier reef, the other 300 m further downstream. As a result of cumulative upstream events, the daily net calcification was ten times higher at the downstream (5.22 gm-2 d-1) than at the upstream (0.45 gm-2 d-1) site. The carbonate uptake by in situ Porites lobata in enclosures (8 kgm-2 yr-1) was ten times higher than the uptake by the whole community in the surrounding water (0.8 kgm-2 yr-1) and five times higher than that recorded for P. lobata in laboratory experiments (1.4 kgm-2 yr-1), where illumination levels were 10% of in situ levels. In laboratory experiments, the planktonic fraction of the seawater had no perceptible influence on the calcium carbonate budget. In the absence of bioeroders, living coral totally depleted the carbonate content of the seawater (3.7 gm-2d-1). Bioerosive organisms played an important role in restoring this calcium carbonate; e.g. sea urchins grazing on algal turf covering dead coral ingested CaCO3 and released this as a carbonate powder (1.26 gm-2d-1); a form of carbonate which is extremely accessible to chemical dissolution.  相似文献   

11.
The diurnal use of space by 25 resident species of coral reef fishes was investigated along three depth (10 to 40 m) transects over an 18 month period. Emphasis was placed on the small, cryptic members of the communities. Three aspects of the use of space — temporal utilization, occupancy and time span — are defined and quantified for each of the species. In addition, an estimate of the diurnal home range volume of each species is provided. The territorial pomacentrids showed the highest level of temporal utilization, holding the same territories throughout the study. The consistent presence of the holocentrid species within the reef infrastructure had the potential to influence the space available to other species. Some species residing in tube-worm holes and sponges also exhibited constant use of space.  相似文献   

12.
This study explores the types of changes in pigmentation and morphology that occur immediately after settlement in 13 families of tropical reef fishes encompassing 34 species. The morphology of individual fishes was recorded daily from when they were first caught at night as they came into the vicinity of a reef to settle. Changes in pigmentation and morphology were species specific and often varied greatly among species within a family or genus. Pigmentation changes were typically rapid (<36 h) and dramatic. Morphological changes involved the elongation and regression of fin spines and changes in head shape and body depth. Eighteen percent of species experienced changes in snout shape and dorsal spine length of greater than 5%. Similarly, 15% experienced changes in pectoral fin length and head length of greater than 5%. Changes typically occurred gradually over 6 or more days, although in about 44% of the species the major change in one of the measured body dimensions occurred rapidly (within 36 h). Moderately strong positive relationships were found between both growth and developmental rates and the extent of metamorphosis in the damselfishes (Pomacentridae) (r=0.48 and 0.63, respectively). This suggests there may be a minimum level of development necessary to be a fully functional demersal juvenile. Although many of the changes that occur are subtle compared to the preceding development, these changes occur at an important ecological transition. Published online: 16 August 2002  相似文献   

13.
Siderastrea siderea and Montastrea annularis were labeled in situ with NaH14CO3. The corals were sampled over a period of 11 days and the radioactivity remaining in the ethanolsoluble and ammonia-soluble fractions measured. Total radioactivity in the corals fell to about 1/3 after one night and then to about 1/3 in the next 10 days. The ethanol-soluble radioactivity is probably converted to the less soluble, ammonia-extractable, material in the dark.Contribution No. 1514 from the University of Miami, Rosenstiel School of Marine and Atmospheric Science, 10 Rickenbacker Causeway, Miami, Florida 33149, USA.  相似文献   

14.
Preferential use of one side of the body for cognitive or behavioural tasks (lateralization) is common in many animals, including humans. However, few studies have demonstrated whether lateralization is phenotypically plastic, and varies depending on the ecological context. We studied lateralization (measured as a turning preference) in the bridled monocle bream (Scolopsis bilineatus). This coral reef fish is commonly infected by a large, ectoparasitic isopod (Anilocra nemipteri) that attaches to the left or right side of its host’s head. Fish that were parasitized showed no turning bias with respect to the side on which the parasite had attached. On average, however, parasitised fish were significantly more lateralized (i.e. had a strong side bias) than unparasitized fish. The extent of lateralization declined significantly when we experimentally removed the parasite. Our results indicate that lateralization can vary with the ecological context. One possible explanation is that lateralization shortens the response time until fish flee after encountering a predator. A stronger side bias might be advantageous for parasitized individuals to overcome their recently documented lower maximum swimming speed.  相似文献   

15.
Ecosystem models represent potentially powerful tools for coral reef ecosystem managers. They can provide insight into ecosystem dynamics not achievable through alternative means allowing coral reef managers to assess the potential outcome of any given management decision. One of the main limitations in the applicability of ecosystem models is that they often require detailed empirical data and this can restrict their applicability to ecosystems that are either currently well studied or have the resources available to collect the required data. This study describes the development of a coral reef ecosystem model that can be calibrated to an ecosystem with limited empirical data. Based on the assumption that coral reef ecological structure is generic across all tropical coral reefs and that the magnitude of the interactions between ecological components is reef specific, the dynamics of the ecosystem can be replicated based on limited empirical data. The model successfully replicated the dynamics of three individual reef systems including an inshore and oceanic reef within the Great Barrier Reef and a Caribbean reef system. It highlighted the importance of understanding the specific dynamics of a given reef and that a positive management intervention in one system may result in a negative outcome for another. The model was also used to assess the importance of various interactions within coral reef ecosystems. It identified the interactions between hard corals and other non-algal benthic components as being an important (but currently understudied) facet of coral reef ecology. The development of this modelling approach provides access to ecosystem modelling tools for coral reef managers previously excluded due to a lack of resources or technical expertise.  相似文献   

16.
Mating reef white-tip sharks, Triaenodon obesus, were observed and photographed in shallow waters of the Hawaiian Islands. The sharks copulated in a stationary parallel orientation with their heads on the bottom and bodies angled upwards approximately 45° into the water column. Pair contact during copulation was maintained by the male's left clasper anchored in the female's vent and by his tight oral grasp of the female's left pectoral fin. Results show that reposed sedentary modes of copulation are not limited to small species. In a reproductive context, biting behavior by male sharks functions as a premating releaser for female cooperation and for pair-contact maintenance during copulation.  相似文献   

17.
Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (<10%) than published estimates from surveys along small transects (<0.02 ha), which is not consistent with inverted biomass pyramids (predator biomass greater than prey biomass) reported by other researchers for pristine reefs. We examined the relation between the density of reef sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas.  相似文献   

18.
A study of the calcareous tube-building polychaete Hydroides dianthus (Verrill) in a temperate estuary (Delaware Bay, USA) revealed an assemblage that was strongly associated with the serpulid. This polychaete species provided numerous microhabitats by means of its tubes and sediment enriched with tube fragments. Quantitative associations for winter and summer tube heads showed that 17 and 12 species, respectively, were statistically dependent on H. dianthus. There were significant associations between number of species, number of individuals, mean number of animals, standard deviation, the size of the tube clump for both seasons (winter and summer), and for scaled standard deviation (SDN) and species diversity (H) during the winter. Successional development of the serpulid assemblage starts with the settling of H. dianthus, progresses through growth, maturation, mortality, and the interaction of associates and predators, resulting in a highly diverse benthic assemblage in this temperate estuary.  相似文献   

19.
E. Meroz  M. Ilan 《Marine Biology》1995,124(3):443-451
Study of the life history characteristics of the common Red Sea sponge Mycale fistulifera (Poecilosclerida: Demospongiae) reveals several traits which may categorize it as an opportunistic species: (1) at least part of the population is reproductively active throughout the year, providing a continuous supply of larvae for settlement; (2) sponges may produce and release a large number (152±39 larvae d-1) of brooded larvae; (3) released larvae are capable of fast settlement and metamorphosis (minutes to 30 hours post-release); (4) the turnover of the population is high and population size varies with time. From 48 initial sponges plus 94 recruits, only 25 remained alive after 14 months of observation; (5) most members of the population (>70%) have a small body size (<30 cm2); (6) sexual maturity may occur at an early age. These traits facilitate continuous establishment of M. fistulifera in new spaces on the reef; (7) M. fistulifera, preferred substrate is another opportunistic species, the coral Stylophora pistillata which it overgrows.  相似文献   

20.
The cryptobenthic reef fish communities from four microhabitats at Orpheus Island, central Great Barrier Reef are described. Eighty-four 0.4m2 samples yielded a total of 368 individuals from 42 species in eight families, with a mean density of 11 individuals m–2 (±1.7SE) and 2.9 species 0.4 m–2 (±0.2SE). Caves contained the highest number of both individuals (120) and species (26), followed by sand/rubble, soft coral, and open reefs. Microhabitat associations included cave and soft coral specialists. Site fidelity in 71 tagged individuals of 4 species was high, with a mean recapture rate of 53% (±8.4SE) remaining within the ~0.4 m2 sampling area after a 48-h period. Behavioural observations also reflect this limited movement, with the dominant mode of behaviour in 7 species being a motionless state (67.5% ±11.6SE), followed by feeding (21.8% ±8.7SE), hiding (6.3% ±1.6SE), and swimming (4.4% ±1.5SE). Two distinct behavioural groups are identified: (1) sedentary forms, characterised by long periods of immobility (5 species); and (2) winnowers, characterised by long feeding bouts (2 species). The fine-scale partitioning of microhabitats, restricted home ranges, and sedentary behaviour of many cryptobenthic reef fish species suggest that this reef fish community exhibits similar patterns of habitat utilisation to their larger reef-fish counterparts, but at a much finer scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号