首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
用硝酸银滴定法测定水中氯离子时,存在S~2-、SO_3~2-、S_2_O_3~2-的干扰,原用H_2O_2消除干扰,但滴定到达终点后,颜色不太稳定,为此,我们采用过硫酸钾氧化法进行消除干扰的试验。实践证明,该方法对消除上述干扰物是可行的,对测定石油勘探开发废水中氯离子时消除干扰是适用的。  相似文献   

2.
为使石墨炉原子吸收法测金属元素准确可靠,对各测定程序和环节采取了消除干扰、测平行双样、测加标回收率、对照分析等措施。测定数据经统计分析,加标回收率在87.3%~115.2%范围内,平行双样相对偏差在12.3%以下,标准土样重复测定变异系数除镉(Cd)外均在5.9%以下,达到了分析测定的要求。  相似文献   

3.
密封消解法测定高氯离子含盐废水COD_(Cr)的探讨   总被引:6,自引:0,他引:6  
针对国标重铬酸钾法测定高氯离子含盐废水CODCr时的不足,提出用密封消解法来测定高盐废水CODCr的观点,通过丁酮氧化率、氯离子干扰、混配水样和实际水样测定结果的比较,对国标法和密封消解法进行了验证。试验结果表明:在测定高氯离子含盐废水CODCr值时,密封消解法优于重铬酸钾法,能够真实准确地反映废水的CODCr。  相似文献   

4.
溶液稀释法是一种简单有效的消除非光谱干扰的方法,背景扣除法、干扰系数法是消除光谱干扰的简单常用方法;应用于实际水样分析,效果较好。电感耦合等离子体发射光谱法(ICP-OES)对水样中总磷的测定尚没有国家标准方法,本文对ICP-OES法测定磷的干扰及校正情况给以浅析,更适于环境水样的快速、批量分析。方法检出限、测定下限能满足环境水样的分析要求。  相似文献   

5.
高氯离子水样COD测定方法的研究进展   总被引:1,自引:0,他引:1  
COD是水质监测的一项重要指标,氯离子是COD测定中主要的干扰物之一。如何消除氯离子的干扰。提高COD测定的重复性和准确度。同时减轻二次污染,是广大环境监测者非常关注的问题。文章对高氯离子水样COD测定方法的研究进展作了简要综述。  相似文献   

6.
在高锰酸盐指数的测定中,干扰最为严重且难以消除的是氯离子(Cl-)的影响。高浓度氯离子的干扰会导致测定结果偏差大,无法界定高锰酸盐指数是否达标。对高含氯水样高锰酸盐指数测定新方法(改进的高锰酸盐指数法)的实验研究结果表明,在采用标准高锰酸钾法对高含氯水样进行的高锰酸盐指数测定中,利用稀释方法,在碱性条件下用硫酸锰作催化剂,可以避免氯离子的干扰,提高了高锰酸钾对有机物的氧化率,能真实地反映水样中有机物的污染程度。  相似文献   

7.
本文论述了以微分脉冲极谱法为基础用于测定淡水,河口水和海水中纤克/毫升级的锰的方法,用柠檬酸盐——硼酸盐溶液将水样绥冲在pH9.5,该缓冲液也用作支持电介质。该法不受天然水中可能存在的潜在干扰化合物的影响。而且,铁(在抗坏血酸盐——硼酸盐缓冲溶液中,pH9.5)或铬(在抗坏血酸盐——氨——氯化铵缓冲溶液中,pH9.8)可与锰一起测定。报道了阿诺(Arno)河中锰、铁和铬的浓度的某些测定结果。  相似文献   

8.
废钻井液是油气勘探开发的废弃物,目前多采用就地掩埋方式处置。准确测定废钻井液中氟化物的含量,对于评价其对环境可能造成的影响是十分必要的。选用离子选择电极法测定废钻井液中的氟时,对预处理方法进行了试验研究:试验了蒸馏-离子选择电极法、碱熔-离子选择电极法、碱熔-蒸馏-离子选择电极法。结论是:碱熔-蒸馏预处理法综合了碱熔法和蒸馏法各自的优点,能将氟从钻井液中最大程度地蒸馏出来,消除了基体对氟测定的干扰。因此,此法以回收率表示的废钻井液全氟准确度为最高并达到了文献要求,方法可靠。  相似文献   

9.
碘化钾碱性高锰酸钾法测定化学需氧量有关问题的释疑   总被引:1,自引:0,他引:1  
最常见的化学需氧量(COD)的测定方法是铬酸钾法和高锰酸钾法。但用上述两种方法测定废水中COD时易受到氯离子的干扰。为此,提出了用“碘化钾碱性高锰酸钾法”消除氯离子干扰的机理。对碘化钾高锰酸钾法验证的结果表明,该方法适用于测定油气田和炼化企业高氯、低氯废水的COD。求出用碘化钾高锰酸钾法与铬酸钾法测定的COD比值,可将碘化钾碱性高锰酸钾测定法的CODOH.KI换算成铬酸钾法的CODCr值来衡量水体的有机物污染情况及判断废水是否达到排放标准。  相似文献   

10.
用纳氏试剂比色法测污水中氨氮含量,为了消除干扰物质对测定的影响,需根据水体受污染程度,对水样通过絮凝沉淀法或蒸馏法进行预处理.本文通过试验论证了即使对较清洁的水,也以蒸馏法预处理为佳,蒸馏法预处理后的测定值更接近真值.  相似文献   

11.
In this study we developed and tested a spray method to visualize bromide water tracer in soil profiles. The method is based on the transformation reaction of a white precipitate into a colored one (Prussian blue) in the presence of Br-. After application of water containing bromide (0.2-0.4% wt.), a soil profile is dug out from the irrigated area and sprayed with a Br- indication suspension containing ferric ion and silver ferrocyanide precipitate. About two hours later, the pattern of irrigation water movement in the soil profile appears due to the formation of Prussian blue complex. We describe the method and demonstrate its use in a field experiment to visualize water flow paths. Since this method might be subject to possible interference from Cl-, a newly designed method with iodide ion as a water tracer and its indication solution containing soluble starch and ferric ion is also presented and recommended for use in soils with high chloride background.  相似文献   

12.
Managed drainage ditches are common in the midwestern United States. These ditches are designed to remove water from fields as quickly as possible, and sediment buildup necessitates dredging, to ensure adequate water removal. This laboratory study was conducted to determine the impact of ditch dredging on soluble phosphorus (P) transport. Ditch sediments were collected from a drainage ditch in northeastern Indiana immediately before and after dredging. The sediments were placed in a stream simulator, and stream water was loaded with 0.55 mM P for 5 d (adsorption experiment). Water was then removed, and "clean" water (no P added) was used for a desorption experiment, lasting 1 d. During the adsorption experiment, pre-dredged sediments were able to remove P from the water column quicker, and P concentrations 120 h after introduction of high P water were lower for the pre-dredged sediments (0.075 mM P) than the dredged sediments (0.111 mM P). During the desorption experiment, P was released to the water column slower in the pre-dredged treatment than the dredged treatment (instantaneous flux at t = 0 was 0.205 microM P h(-1) for pre-dredged and 0.488 microM P h(-1) for dredged). This occurred despite higher Mehlich 3-extractable P in the pre-dredged sediments than the dredged sediments. Equilibrium phosphorus concentrations (EPCo) were lower in the pre-dredged sediments during both adsorption and desorption experiments. Transport of soluble P immediately after dredging will likely increase in drainage ditches; however, dredging is a necessary management tool to ensure adequate discharge of water from surrounding fields.  相似文献   

13.
ABSTRACT. Salinization and water logging have been the nemesis of irrigated agriculture societies since Babylonian times. Low quality water substitutes for high quality water for irrigation at an increasing rate up to the limits of the soil's ability to transmit the additional water and remove excess salts from the root zone. Soil transmissibility can be increased by additional investment in drainage ditches and underground tile. Low valued-high salt tolerant crops can be substituted for higher valued-salt sensitive crops to maintain production in areas served by irrigation water sources of deteriorating quality. Thus physical factors specify the necessary conditions for survival of an irrigated agriculture. The sufficient conditions for survival must be in terms of a positive net income in each subplanning period discounted to its present value.  相似文献   

14.
Selenium (Se), boron (B), and salinity contamination of agricultural drainage water is potentially hazardous for water reuse strategies in central California. To demonstrate the feasibility of using plants to extract Se from drainage water, Se accumulation was determined in canola (Brassica napus L.) and broccoli (Brassica oleracea L.) irrigated with drainage effluent in the San Joaquin Valley, California. In the 2-yr field study, both crops were irrigated with a typical drainage water containing Se (150 microg L(-1)), B (5 mg L(-1)), and a sulfate dominated salinity (EC of 7 dS m(-1)). Total dry matter yields were at least 11 Mg ha(-1) for both canola and broccoli, and plant tissue Se concentrations did not exceed 7 mg kg(-1) DM for either crop. Based on the amount of soluble Se applied to crops with drainage water and the estimated amount of soluble Se remaining in soil to a depth of 90 cm at harvest, both canola and broccoli accumulated at least 40% of the estimated soluble Se lost from the soil for both years. Applied Se not accounted for in plant tissue or as soluble Se in the soil was presumably lost by biological volatilization. This study suggests that irrigating two high value crops such as canola and broccoli with Se-laden effluent helps manage Se-laden effluent requiring treatment, and also produces economically viable Se-enriched crops. Future research should focus on managing residual salt and B in the soil for sustaining long time water reuse strategies.  相似文献   

15.
The activated sludge process can remove significant amounts of phosphorus from sewage, but the removal efficiency is usually significantly reduced by the release of phosphate back to solution during subsequent treatment steps. This research presents a study of soluble phosphate release from activated sludge with emphasis on defining the factors that affect such release and the actual release mechanisms. Laboratory units were used for experimental purposes. The experiments were designed to study the relationship between soluble phosphate release and various environmental factors such as redox potential (ORP), dissolved oxygen (DO), pH, solids concentration, solids destruction, and sulfate salt addition. The effect of substrate utilization on phosphate uptake and the relationship between uptake characteristics and subsequent phosphate release were also studied. The results show that some phosphate storage occurs during aerobic substrate utilization. Following substrate utilization, activated sludge phosphate release is directly related to the amount of biological stress the organisms are subjected to, and the mechanism of release is primarily cell lysis. The phosphate released per unit sludge under anoxic conditions is relatively constant. Under normal environmental conditions, neither ORP or pH change have a significant affect on phosphate release.  相似文献   

16.
Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.  相似文献   

17.
吹脱法应用于低浓度废水处理,可有效去除水中的溶解性气体和挥发性油类,同时还可增加水中的溶解氧,为进一步的生物处理创造有利条件。利用现场动态实验对影响除油的因素进行了试验研究,确定最佳处理条件为:气水比5∶1、淋水密度5.0m3/(m2·h),实验表明在最佳运行状态下,吹脱法对地下水中油类物质的去除率能够达到50%,还能去除水中的铁、氨氮等污染物质,是一种非常有效的预处理方法。为了弄清目前炼油厂废水的处理水平,通过对三个典型炼油废水处理厂的调查,分别对其处理流程、处理效果、采用的主要处理药剂及处理工艺进行了介绍,分析了每套处理设施的长处以及与先进设施对比存在的不足。  相似文献   

18.
采出水经处理后通常需作为地层回注水使用,由于油气生产的特殊性,常用的H2S脱除方法在使用中受到限制,探索适合于油气田生产的水处理方法十分必要。文章探讨了通常可用于油田采出水中H2S脱除的各种方法,对比了各类方法的优缺点,提出以NaClO为主要脱硫剂的水处理方法,通过对模拟采出水的室内实验,证明次氯酸法可以快速有效地去除采出水中的H2S,使H2S残留量低于1 mg/L。实验表明:经处理后的水质可以达到SY/T 5329-2012《碎屑岩油藏注水水质指标及分析方法》要求,处理成本较低。  相似文献   

19.
Management of saline-sodic water from the coalbed natural gas (CBNG) industry in the Powder River Basin (PRB) of Wyoming and Montana is a major environmental challenge. Clinoptilolie zeolites mined in Nevada, California, and New Mexico were evaluated for their potential to remove sodium (Na+) from CBNG waters. Based on the exchangeable cation composition, naturally occurring calcium (Ca2+)-rich zeolites from New Mexico were selected for further evaluation. Batch adsorption experiments were conducted to evaluate the potential of the Ca(2+)-rich natural clinoptilolites to remove Na+ from saline-sodic CBNG waters. Batch adsorption experiments indicated that Na+ adsorption capacity ofclinoptilolite ranged from 4.3 (4 x 6 mesh) to 7.98 g kg(-1) (14 x 40 mesh). Among the different adsorption isotherms investigated, the Freundlich Model fitted the data best for smaller-sized (6 x 8, 6 x 14, and 14 x 40 mesh) zeolites. Passing the CBNG water through Ca(2+)-rich zeolite columns reduced the salt content (electrical conductivity [EC]) by 72% with a concurrent reduction in sodium adsorption 10 mmol 1/2 L(-1/2). Zeolite technology appears to be an effective water treatment alternative to industrial membrane treatment for removing Na+ from poor-quality CBNG waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号