首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Controlled release, blind test of DNAPL remediation by ethanol flushing   总被引:1,自引:0,他引:1  
A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.  相似文献   

2.
The partitioning tracer technique is among the DNAPL source-zone characterization methods being evaluated, while surfactant in-situ flushing is receiving attention as an innovative technology for enhanced source-zone cleanup. Here, we examine in batch and column experiments the magnitude of artifacts introduced in estimating DNAPL content when residual surfactants are present. The batch equilibrium tests, using residual surfactants ranging from 0.05 to 0.5 wt.%, showed that as the surfactant concentrations increased, the tracer partition coefficients decreased linearly for sodium hexadecyl diphenyl oxide disulfonate (DowFax 8390), increased linearly for polyoxyethylene (10) oleyl ether (Brij 97), and decreased slightly or exhibited no observable trend for sodium dihexyl sulfosuccinate (AMA 80). Results from column tests using clean sand with residual DowFax 8390 and Tetrachloroethylene (PCE) were consistent with those of batch tests. In the presence of DowFax 8390 (less than 0.5 wt.%), the PCE saturations were underestimated by up to 20%. Adsorbed surfactants on a loamy sand with positively charged oxides showed false indications of PCE saturation based on partitioning tracers in the absence of PCE. Using no surfactant (background soil) gave a false PCE saturation of 0.0004, while soil contacted by AMA 80, Brij 97, and DowFax 8390 gave false PCE saturations of 0.0024, 0.043, and 0.23, respectively.  相似文献   

3.
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution.  相似文献   

4.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

5.
A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field retardation trends observed in that test. While it is acknowledged that other "nonideal transport" effects may contribute, our analysis predicts differences in the PCE retardation magnitude and trend between the two experiments that are consistent with field observations based on the marked solute concentration differences that resulted from contrasting source conditions. Solute and co-solute concentration effects have heretofore received little attention, but may have wide significance in aquifers contaminated by point-source pollutants because many plumes contain mixed solutes over wide concentration ranges in strata that are likely subject to nonlinear sorption.  相似文献   

6.
A partitioning tracer test based on gas-phase diffusion in the vadose zone yields estimates of the residual nonaqueous phase liquid (NAPL) saturation. The present paper investigates this technique further by studying diffusive tracer breakthrough curves in the vadose zone for a heterogeneous NAPL distribution. Tracer experiments were performed in a lysimeter with a horizontal layer of artificial kerosene embedded in unsaturated sand. Tracer disappearance curves at the injection point and tracer breakthrough curves at some distance from the injection point were measured inside and outside of the NAPL layer. A numerical code was used to generate independent model predictions based on the physicochemical sand, NAPL, and tracer properties. The measured and modeled tracer breakthrough curves were in good agreement confirming the validity of important modeling assumptions such as negligible sorption of chlorofluorocarbon (CFC) tracers to the uncontaminated sand and their fast reversible partitioning between the soil air and the NAPL phase. Subsequently, the model was used to investigate different configurations of NAPL contamination. The experimental and model results show that the tracer disappearance curves of a single-well diffusive partitioning tracer test (DPTT) are dominated by the near-field presence of NAPL around the tip of the soil gas probe. In contrast, breakthrough curves of inter-well tracer tests reflect the NAPL saturation in between the probes, although there is no unique interpretation of the tracer signals if the NAPL distribution is heterogeneous. Numerical modeling is useful for the planning of a DPTT application. Simulations suggest that several cubic meters of soil can be investigated with a single inter-well partitioning tracer test of 24-hour duration by placing the injection point in the center of the investigated soil volume and probes at up to 1 m distance for the monitoring of gaseous tracers.  相似文献   

7.
Two-dimensional chamber studies were conducted to determine qualitative and quantitative performance of cosolvents targeted at pooled dense non-aqueous phase liquid (DNAPL) (perchlorethylene, PCE) residing above a fine-grain capillary barrier. Downward mobilization of DNAPL, up gradient along an overriding cosolvent front, was observed. This produced significant pooling above a fine-grain layer that in some cases lead to entry into the capillary barrier beneath. Entry pressure calculations using physical and hydrogeologic parameters provided an excellent prediction of breakthrough of DNAPL into the capillary barrier. Calculations predict approximately 0.5 m of DNAPL would be necessary to enter a Beit Netofa clay, under extreme cosolvent flooding conditions (100% ethanol). Gradient injection of cosolvent did not appear to provide any benefit suggesting a rapid decrease in interfacial tension (IFT) compared to the rate of DNAPL solubilization. Use of a partitioning alcohol (tertiary butyl alcohol, TBA) resulted in DNAPL swelling and reduced entry into the capillary barrier. However, the trapping of flushing solution, containing PCE, could potentially lead to longer remediation times.  相似文献   

8.
The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confining layer for the underlying regional aquifer. Three suites of three tracers were injected into wells located 14, 24, and 24 m from a single, central extraction well. The tracers comprised noble gases (traditionally thought to be nonsorbing), alkanes (primarily water partitioning), perfluorides (primarily NAPL partitioning), and halons (both NAPL and water partitioning). Observations of vacuum response were consistent with flow in a fractured system. The halon tracers exhibited the greatest amount of retardation, and helium and the perfluoride tracers the least. The alkane tracers were unexpectedly more retarded than the perfluoride tracers, indicating low NAPL saturations and high water saturations. An NAPL saturation of 0.01, water saturation of 0.215, and gas saturation of 0.775 was estimated based on analysis of the suite of tracers comprising helium, perfluoromethylcyclohexane and dibromodifluoromethane, which was considered to be the most robust set. The estimated saturations compare reasonably well to independently determined values.  相似文献   

9.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

10.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   

11.
In this work, we extend the recently developed gradient approach for surfactant-enhanced remediation of dense non-aqueous phase liquid (DNAPL)-impacted sites. The goal of the gradient approach is to maximize the DNAPL solubilization capacity in swollen micelles (Type I aqueous microemulsions) while at the same time minimizing the potential for DNAPL mobilization. In this work, we introduce a modified version of the capillary/trapping curve that we refer to as the gradient curve to help interpret and/or design the gradient approach. The gradient curve presents the residual DNAPL saturation as a function of interfacial tension and microemulsion viscosity. This approach demonstrates that keeping a low viscosity of the microemulsion phase is not only important for keeping a low head loss during surfactant flooding but also to prevent oil mobilization. Eight microemulsion systems were evaluated in this research; these systems were evaluated based on their tetrachloroethylene (PCE) solubilization capacity, interfacial tension (IFT), viscosity, density, and coalescence kinetics. Two of these systems were chosen for evaluation in site-specific column tests using an increasing electrolyte gradient to produce a decreasing IFT/increasing solubilization gradient system. The column studies were conducted with media from Dover Air Force Base in Dover, DE. Both solubilized and mobilized DNAPL were quantified. During the column studies, we observed that substantial PCE was mobilized when the residual level of PCE in the column was significantly higher than the steady-state residual saturation level being approach (as predicted from the gradient curve). Four column studies were performed, three of which were used to asses the validity of the gradient curve in predicting the residual saturation after each gradient step. From these tests we observed that starting IFTs of less than 1 mN/m all produced the same mobilization potential. In the last column, we used an additional gradient step with an initial IFT above 1 mN/m to dramatically reduce the amount of PCE mobilize. Based on the good agreement between column results and projections based on the gradient curve, we propose this as a preferred method for designing gradient surfactant flushing systems.  相似文献   

12.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

13.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

14.
The stable carbon isotope values of tetrachloroethene (PCE) and its degradation products were monitored during studies of biologically enhanced dissolution of PCE dense nonaqueous phase liquid (DNAPL) to determine the effect of PCE dissolution on observed isotope values. The degradation of PCE was monitored in a 2-dimensional model aquifer and in a pilot test cell (PTC) at Dover Air Force Base, both with emplaced PCE DNAPL sources. Within the plume down gradient from the source, the isotopic fractionation of dissolved PCE and its degradation products were consistent with those observed in biodegradation laboratory studies. However, close to the source zone significant shifts in the isotope values of dissolved PCE were not observed in either the model aquifer or PTC due to the constant input of newly dissolved, non fractionated PCE, and the small isotopic fractionation associated with PCE reductive dechlorination by the mixed microbial culture used. Therefore the identification of reductive dechlorination in the presence of PCE DNAPL was based upon the appearance of daughter products and the isotope values of those daughter products. An isotope model was developed to simulate isotope values of PCE during the dissolution and degradation of PCE adjacent to a DNAPL source zone. With the exception of very high degradation rate constants (>1/day) stable carbon isotope values of PCE estimated by the model remained within error of the isotope value of the PCE DNAPL, consistent with measured isotope values in the model aquifer and in the PTC.  相似文献   

15.
A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30 degrees dip angle, which was similar to PCE recovery for injection in the downward flow direction. Lower areal PCE recovery at greater dip angles in either direction of flow was attributed to DNAPL swelling and migration, flood front instabilities and bypassing of the displaced fluid past the extraction wells during the alcohol pre-flood. Additional results demonstrate that the use of an alcohol pre-flood can be beneficial in improving DNAPL recovery in the horizontal orientation, but pre-flooding may reduce areal recovery efficiency in dip-angle orientations. This study also demonstrates the use of theoretical perturbation (fingering) analysis in predicting NAPL recovery efficiency for flooding processes in remediating aquifers with dip angles.  相似文献   

16.
Performance assessment of NAPL remediation in heterogeneous alluvium   总被引:1,自引:0,他引:1  
Over the last few years, more than 40 partitioning interwell tracer tests (PITTs) have been conducted at many different sites to measure nonaqueous phase liquid (NAPL) saturations in the subsurface. While the main goal of these PITTs was to estimate the NAPL volume in the subsurface, some were specifically conducted to assess the performance of remedial actions involving NAPL removal. In this paper, we present a quantitative approach to assess the performance of remedial actions to recover NAPL that can be used to assess any NAPL removal technology. It combines the use of PITTs (to estimate the NAPL volume in the swept pore volume between injection and extraction wells of a test area) with the use of several cores to determine the vertical NAPL distribution in the subsurface. We illustrate the effectiveness of such an approach by assessing the performance of a surfactant/foam flood conducted at Hill Air Force Base, UT, to remove a TCE-rich NAPL from alluvium with permeability contrasts as high as one order of magnitude. In addition, we compare the NAPL volumes determined by the PITTs with volumes estimated through geostatistical interpolation of aquifer sediment core data collected with a vertical frequency of 5-10 cm and a lateral borehole spacing of 0.15 m. We demonstrate the use of several innovations including the explicit estimation of not only the errors associated with NAPL volumes and saturations derived from PITTs but also the heterogeneity of the aquifer sediments based upon permeability estimates. Most importantly, we demonstrate the reliability of the  相似文献   

17.
During soil bioremediation, the diffusion of oxygen into the soil is an important prerequisite for aerobic biodegradation, and the decrease of petroleum products is the ultimate goal. Both processes need to be monitored. The aim of this work was to develop a gas tracer test that yields information on both, gas diffusion and residual saturation with non-aqueous phase liquids (NAPLs) in unsaturated soil heaps. One conservative tracer (methane) and 4 partitioning gas tracers (diethylether, methyl tert-butyl ether, chloroform and n-heptane) were injected as vapors into laboratory columns filled with unsaturated sand with increasing NAPL saturation. Breakthrough curves of gaseous compounds were measured at two points and compared to analytical solutions of an analytical diffusive-reactive transport equation. By fitting of methane data, robust results for effective diffusivity (tortuosity) were obtained. NAPL saturation was most accurately measured by the moderately water soluble tracers (ethers and chloroform). The hydrophobic tracer n-heptane did not partition into water-immersed NAPL. An easy and accurate way to assess air-NAPL partitioning constants from gas chromatography retention times is furthermore reported. It is concluded that gas tracer tests have the potential for measuring two important properties in soil bioremediation systems easily and quickly.  相似文献   

18.
Kang N  Hua I  Rao PS 《Chemosphere》2006,63(10):1685-1698
The Fenton's system is applied to the destruction of perchloroethylene (PCE) present as a dense non-aqueous phase liquid (DNAPL) in soil slurry systems; the initial concentration of PCE was 45 times higher than its aqueous solubility. Studies were conducted in two matrices: Ottawa sand and soil from Warsaw, IN. In Ottawa sand, a 60-62% decrease in PCE concentration was observed, and Cl(-) recovery was 47-58%, whereas in Warsaw soil, a 44-49% decrease in PCE concentration and a Cl(-) recovery of 40-42% were observed after the addition of 600 mM H(2)O(2) and 10 mM dissolved iron. Significantly enhanced destruction resulted during application of N-(2-hydroxyethyl) iminodiacetic acid (HEIDA) to Warsaw soil. For example, in the absence of HEIDA in Warsaw soil, 36% PCE loss and 33% Cl(-) release were observed at 600 mM H(2)O(2) and 5 mM Fe(III), while 74% PCE loss and 63% Cl(-) release were achieved at 600 mM H(2)O(2) and 5 mM Fe(III)-HEIDA. For both soils, the catalytic activities of Fe(II) and Fe(III) were nearly equivalent. These findings clearly demonstrate that system design can be optimized with regard to process variables in Fenton's treatment of DNAPL in soils.  相似文献   

19.
Phase behaviour experiments employing PCB (Aroclor 1242)/alcohol/water systems were conducted with ethanol (EtOH) and n-propanol (nPA). Both exhibited an affinity for the aqueous phase within the entire two-phase region. As much as 88% by volume (88% vol.) EtOH and 80% vol. nPA were necessary to achieve full miscibility of the PCB in the aqueous phase. DNAPL-water interfacial tension (IFT) was reduced from 38.9 dyn/cm to 4.7 dyn/cm and 2.4 dyn/cm with 80% vol. EtOH and 76% vol. nPA. The addition of alcohol brought about 41% and 54% reductions in DNAPL viscosity at maximal concentrations of EtOH and nPA. Density of the PCB-DNAPL was relatively unaffected by the presence of alcohol. A series of seven experiments were conducted where successive slugs of nPA and xanthan gum polymer solutions were injected into a fractured shale sample. A 30% vol. nPA solution injected under a hydraulic gradient of 0.36 allowed enhanced PCB removal primarily through reduction of IFT and resulted in 72% DNAPL recovery. Several pore volumes of alcohol solution were necessary to displace all the potentially mobile non-wetting phase since the high-viscosity DNAPL was mobilized at a lower flow rate than the overall fluid velocity, illustrating non-piston displacement. The injection of a 95% vol. nPA alcohol solution, theoretically at a sufficient concentration to produce fully miscible displacement of the residual DNAPL at equilibrium, resulted in non-equilibrium partitioning of the PCB into the flushing solution, likely due to the high fluid velocities in the fracture. The injection of 200 pore volumes of 95% vol. nPA solution resulted in 94% DNAPL recovery. Alcohol floods operated below the miscibility envelope appear to be a valuable source zone remedial alternative where the objective is to reduce DNAPL mobility to zero, but it should be noted that DNAPL mobility is increased during the application of the technology and steps may need to be taken to prevent unwanted vertical mobilization.  相似文献   

20.
A novel method to remediate dense nonaqueous phase liquid (DNAPL) source zones that incorporates in situ density conversion of DNAPL via alcohol partitioning followed by displacement with a low interfacial tension (IFT) surfactant flood has been developed. Previous studies demonstrated the ability of the density-modified displacement (DMD) method to recover chlorobenzene (CB) and trichloroethene (TCE) from heterogeneous porous media without downward migration of the dissolved plume or free product. However, the extent of alcohol (n-butanol) partitioning required for in situ density conversion of high-density NAPLs, such as tetrachloroethene (PCE), could limit the utility of the DMD method. Hence, the objective of this study was to compare the efficacy of two n-butanol delivery approaches: an aqueous solution of 6% (wt) n-butanol and a surfactant-stabilized macroemulsion containing 15% (vol) n-butanol in water, to achieve density reduction of PCE-NAPL in two-dimensional (2-D) aquifer cells. Results of liquid-liquid equilibrium studies indicated that density conversion of PCE relative to water occurred at an n-butanol mole fraction of 0.56, equivalent to approximately 5 ml n-butanol per 1 ml of PCE when in equilibrium with an aqueous solution. In 2-D aquifer cell studies, density conversion of PCE was realized using both n-butanol preflood solutions, with effluent NAPL samples exhibiting density reductions ranging from 0.51 to 0.70 g/ml. Although the overall PCE mass recoveries were similar (91% and 93%) regardless of the n-butanol delivery method, the surfactant-stabilized macroemulsion preflood removed approximately 50% of the PCE mass. In addition, only 1.2 pore volumes of the macroemulsion solution were required to achieve in situ density conversion of PCE, compared to 6.4 pore volumes of the 6% (wt) n-butanol solution. These findings demonstrate that use of the DMD method with a surfactant-stabilized macroemulsion containing n-butanol holds promise as an effective source zone remediation technology, allowing for efficient recovery of PCE-DNAPL while mitigating downward migration of the dissolved plume and free product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号