首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m−3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.  相似文献   

2.
Wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) was measured at Nahant, Massachusetts, a peninsula jutting into Massachusetts Bay and Wolf Neck, a peninsula jutting into Casco Bay, Maine. Wet deposition (rain and snow) was collected in a funnel which drains into a shielded, temperature controlled receiving bottle. Dry deposition of gaseous and particulate PAHs was collected onto an exposed water surface. PAHs were analyzed by solid phase extraction and gas chromatography-mass spectrometry. Sixteen PAH species were analyzed, ranging from acenaphthylene to coronene. The mean wet deposition rate of the sum of the 16 species is 720 ng m−2 cm−1 precipitation at Nahant, and 831 ng m−2 cm−1 precipitation at Wolf Neck. Wet deposition is attributed to regional PAH emitting sources. Storm patterns appear to bring somewhat higher wet deposition of PAHs to Wolf Neck than to Nahant. The mean dry deposition rate is 95 ng m−2 h−1 at Nahant and 9.3 ng m−2 h−1 at Wolf Neck. The large difference is attributed to the fact that Nahant is close to the urban-industrial metropolitan Boston area and Logan International Airport, whereas Wolf Neck has no major PAH-emitting sources nearby. Individual measurements have an error bracket of ±30%. The Chemical Mass Balance model was used to apportion the dry deposition to source categories. At Nahant, nine samples gave valid statistical attributes with a mean apportionment: jet exhaust 35%, gasoline fueled vehicles 32%, diesel fueled vehicles 17%, wood combustion 13%, others 3%. At Wolf Neck, six samples yielded a mean apportionment: jet exhaust 30%, gasoline vehicles 28%, diesel vehicles 18%, wood combustion 16%, others 8%. There is a considerable variation between the samples. The apportionment is greatly dependent on the quality and selection of the model inputs, i.e. source signatures, which for PAHs are questionable.  相似文献   

3.
This study measured particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in two workplace atmospheres of the sintering grate and rough roll shredder in a sintering plant, and to assess their workers’ health-related exposures. We found that the PCDD/F concentration of the sintering grate (site A = 14.47 pg m−3) was lower than that of the rough roll shredder (site B = 17.20 pg m−3). Particle size distributions of PCDD/Fs were in the form of the unimodal with the mass median aerodynamic diameter (MMAD) of 4.74 μm and 5.23 μm, and geometric standard deviation (σg) of 3.15 and 2.15 for the site A and B, respectively. The above results suggest that the workplace of the site A had a less fraction of coarse particles than that of the site B. The estimated PCDD/F concentrations of the inhalable fraction (11.0 pg m−3) and thoracic fraction (8.89 pg m−3) of the site A were lower than those of the site B (12.4 and 9.39 pg m−3, respectively). But to the contrary the estimated respirable fraction of the site A (5.05 pg m−3) was slightly higher than that of the site B (4.93 pg m−3). Our results clearly indicate the importance to conduct particle size segregating samplings for assessing human PCDD/F exposures.  相似文献   

4.
The concentrations of particulate organic matter were measured from May to September 1998 in urban area of Algiers and in municipal waste landfill of Oued Smar. For the sake of comparability, organic aerosols were also monitored at Montelibretti (Italy) in June of the same year. In addition to n-alkanes and polycyclic aromatic hydrocarbons (PAH), monocarboxylic n-alkanoic acids accounted for a large portion of identified organic compounds of aerosol at both Algerian sites. All these species were more abundant at Oued Smar than in downtown Algiers. At the urban site, concentration levels reached by n-alkanes and PAH highlighted the strong impact of motor vehicle emission resulting over the city area. Instead, at the Oued Smar landfill n-alkane and PAH contents depended upon the nature and account of the wastes burnt, and their behaviours were consistent with a pyrolytic origin. n-Alkanoic acids rather originated from the bacterial activity. By contrast, n-alkanes and n-alkanoic acids at Montelibretti seemed to be released by biogenic sources, whereas PAH presence was related to downwind transport of air parcels from Rome metropolitan area.  相似文献   

5.
Abstract

On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.–3 a.m.) with a mean of 2 µg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.–9 a.m.) with a mean of 11.9 µg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 µg/m3 (SD = 3.1, n = 7) to 22.3 µg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest >2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   

6.
The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m−3) and/or that per airborne particulate weight collected on a filter (rev mg−1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO2 and SO2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m−3 and rev mg−1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m−3 value and concentration of 1-nitropyrene (1-NP) in unit per m3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg−1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.  相似文献   

7.
 This study is aimed to characterize the major chemical compositions of PM2.5 from incense burning in a large environmental chamber. Chemical analyses, including X-ray fluorescence for elemental species, ion chromatography for water soluble inorganic species (chloride, nitrate, sulfate, sodium, potassium, ammonium) and thermal/optical reflectance analysis for carbon species were carried out for combustion of three incense categories (traditional, aromatic and church incense). The average concentrations from incense burning ranged from 139.8 to 4414.7 μg m−3 for organic carbon (OC), and from 22.8 to 74.0 μg m−3 for elemental carbon (EC), respectively. The average OC and EC concentrations in PM2.5 of three incense categories were in the order of church incense>traditional incense>aromatic incense. OC/EC ratios ranged from 7.0 to 39.1 for the traditional incense, with an average of 21.7; from 3.2 to 11.9 for the aromatic incense, with an average of 7.7. The concentrations of Cl, SO42−, Na+ and K+ were highly variable. On average, the inorganic ion concentration sequence was traditional incense>church incense>aromatic incense. The profiles for elements were dominated by Na, Cl and K. In general, the major components in PM2.5 fraction from incense burning are OC (especially OC2, OC3 and OC4), EC and K.  相似文献   

8.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, α-thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   

9.
The emissions of selected flame retardants were measured in 1- and 0.02-m3 emission test chambers and 0.001-m3 emission test cells. Four product groups were of interest: insulating materials, assembly foam, upholstery/mattresses, and electronics equipment. The experiments were performed under constant environmental conditions (23°C, 50% RH) using a fixed sample surface area and controlled air flow rates. Tris (2-chloro-isopropyl)phosphate (TCPP) was observed to be one of the most commonly emitted organophosphate flame retardants in polyurethane foam applications. Depending on the sample type, area-specific emission rates (SERa) of TCPP varied between 20 ng m−2 h−1 and 140 μg m−2 h−1.The emissions from electronic devices were measured at 60°C to simulate operating conditions. Under these conditions, unit specific emission rates (SERu) of organophosphates were determined to be 10–85 ng unit−1 h−1. Increasing the temperature increased the emission of several flame retardants by up to a factor of 500. The results presented in this paper indicate that emissions of several brominated and organophosphate flame retardants are measurable. Polybrominated diphenylethers exhibited an SERa of between 0.2 and 6.6 ng m−2 h−1 and an SERu of between 0.6 and 14.2 ng unit−1 h−1. Because of sink effects, i.e., sorption to chamber components, the emission test chambers and cells used in this study have limited utility for substances low vapour pressures, especially the highly brominated compounds; hexabromocyclododecane had an SERa of between 0.1 and 29 ng m−2 h−1 and decabromodiphenylether was not detectable at all.  相似文献   

10.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

11.
PAHs and PCBs were collected simultaneously indoors and outdoors at eight non-smoking homes located in four buildings in high-traffic areas of Rome. The purpose was to evaluate the relevance of indoor air in contributing to the overall exposure of the urban population. The vertical distribution was also investigated by collecting outdoor samples at both road and roof level, and indoor samples in both a high and a low floor flat of each building. At one coal-heated building, samples were collected during both the heating and the non-heating season. No evident PAH source was present indoors. Indoor and outdoor daily concentrations of benzo[a]pyrene (BaP) ranged, respectively, 0.1–4.6 ng m−3 and 0.7–2.3 ng m−3. With the heating on, indoor PAH concentrations equalled or exceeded those outdoors, with BaP indoor/outdoor ratios up to 4; during the warm season, ratios decreased to 0.2–0.6. Indoor PAHs at the low floors exceeded the high-floor ones when the heating was off (vehicle exhausts being the dominant source), while being equal or lower with the heating on; the vertical gradient of indoor PAHs between different floors was within a factor of 2. Outdoor PAHs at roof level were 20–70% of those at road level, which in turn exceeded those at the medium-traffic station up to a factor of 4. The outdoor concentrations of Σ6 indicator PCBs ranged 0.1–1.6 ng m−3. Indoor PCB concentrations exceeded those outdoors by an approximate factor of 2–50. No vertical gradient was observed. The results indicated that indoor air may contribute to the overall exposure to PAHs and PCBs more than the urban air. They were also consistent with recent findings suggesting that indoor air can be a relevant source of PCBs for outdoor air.  相似文献   

12.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

13.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   

14.
Diffusion coefficients (T=23±2 °C) and accessible porosities for HTO, 36Cl and 125I were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na+ and Cl as the main components (I=0.42 M).The measured values of the effective diffusion coefficients (De) and rock capacity factors (α) are: De=1.2–1.5×10−11 m2 s−1 and α=0.09–0.11 for HTO, De=4.0–5.5×10−12 m2 s−1 and α=0.05 for 36Cl and De=3.2–4.6×10−12 m2 s−1 and α=0.07–0.10 for 125I. For non-sorbing tracers (HTO, 36Cl) the rock capacity factor α is equal to the diffusion-accessible porosity . The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of 17% for HTO, 28% for 36Cl and 30% for 125I. Moreover, the diffusion coefficients for 36Cl and 125I are smaller than for HTO, which is consistent with an effect arising from anion exclusion.The diffusion coefficients of HTO and 125I measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

15.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

16.
Air samples were collected using active samplers at various heights of 8, 15, 32, 47, 65, 80, 102, 120, 140, 160, 180, 200, 240, 280 and 320 m on a meteorological tower in an urban area of Beijing in two campaigns in winter 2006. Altitudinal distributions of polycyclic aromatic hydrocarbons (PAHs) in atmospheric boundary layer of Beijing in winter season were investigated. Meteorological conditions during the studied period were characterized by online measurements of four meteorological parameters as well as trajectory calculation. The mean total concentrations of 15 PAHs except naphthalene of gaseous and particulate phase were 667±450 and 331±144 ng m−3 in January and 61±19 and 29±6 ng m−3 in March, respectively. Domestic coal combustion and vehicle emission were the dominant PAH sources in winter. Although the composition profiles derived from the two campaigns were similar, the concentrations were different by one order of magnitude. The higher concentrations in January were partly caused by higher emission due to colder weather than March. Moreover, weak wind, passing through the city center before the sampling site, picked up more contaminants on the way and provided unfavorable dispersion condition in January. For both campaigns, PAH concentrations decreased with heights because of ground-level emission and unfavorable dispersion conditions in winter. The concentration ratio of PAHs in gas versus solid phases was temperature dependent and negatively correlated to their octanol–air partition coefficients.  相似文献   

17.
The aim of the current study was to measure polycyclic aromatic hydrocarbons (PAHs) in eight indoor (In both kitchen and living room) air sampling locations using a passive sampling method for collection. Passive outdoor air samples were also collected from 3 of the same sampling locations as the indoor air sampling sites. Sampling was conducted in three seasons. The summer season, when windows are generally open, was between 18th July and 01st September, 2014; the autumn and winter seasons, when windows are mostly closed, was between 18th October and 01st December, 2014, and 01st December, 2014, and 18th January, 2015, respectively.

Average PAH concentrations in summer were 22 ± 21 ng/m3 and 17 ± 12 ng/m3 in the living room and kitchen, respectively, whereas living room and kitchen average PAH concentrations were 23 ± 16 ng/m3 and 20 ± 9 ng/m3, respectively, in autumn and 23 ± 13 ng/m3 and 23 ± 24 ng/m3, respectively, in winter. Outdoor air PAH concentrations in summer, autumn and winter were 7 ± 0.4 ng/m3, 22 ± 13 ng/m3 and 209 ± 33 ng/m3, respectively. An increase in outdoor PAH concentrations was measured in winter compared to the concentrations in summer and autumn, which paralleled the lower outdoor air temperature. However, PAH concentrations in the indoor environment vary according to the household characteristics and personal habits.  相似文献   


18.
ABSTRACT

The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethyl-phenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern.

The significant contribution of vehicular emissions was identified by CPI values (~1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.  相似文献   

19.
Boundary layer ozone and carbon monoxide were measured at a savannah site in the Orinoco river basin, during the dry and wet seasons. CO and O3 concentrations recorded around noontime show a good linear correlation, suggesting that the higher ozone levels observed during the dry season are photochemically produced during the oxidation of reactive hydrocarbons in the presence of NOx both emitted by biomass burning. The rate of photochemical ozone production in the boundary layer ozone by biomass burning calculated from the production ratio ΔO3/ΔCO (0.17±0.01 v : v) and the amount of CO produced by fires (0.26–1.3 mole m−2 dry season−1), ranges from 0.6 to 2.6 ppbv h−1 for 8 h of daylight. This O3 production rate is in fairly good agreement with the value derived from RO2 radical measurements made in the Venezuelan savannah during the dry season. The net boundary layer production of O3 from all tropical America savannah fires is estimated to range between 0.28 and 0.36 Tmol O3 per year, which is about 3 times higher than the O3 produced from pollution sources in the eastern United States during the summer. An extrapolation to all of the world's savannah would indicate a net boundary layer ozone production of about 1.2 Tmol yr−1. This is discussed in the context of the overall global budget of tropospheric ozone.  相似文献   

20.
Total suspended particulate (TSP) samples have been collected at six stations in the C and B lines of the Buenos Aires underground system and, almost simultaneously, at six ground level sites outside and nearby the corresponding underground stations, in the Oct 2005/Oct 2006 period. All these samples were analyzed for mass and elemental Fe, Cu, and Zn concentrations by using the Particle Induced X-ray Emission (PIXE) technique. Mostly, TSP concentrations were found to be between 152 μg m−3 (25% percentile) and 270 μg m−3 (75% percentile) in the platform of the stations, while those in outside ambient air oscillated from 55 μg m−3 (25% percentile) to 137 μg m−3 (75% percentile). Moreover, experimental results indicate that TSP levels are comparable to those measured for other underground systems worldwide. Statistical results demonstrate that subway TSP levels are about 3 times larger on average than those for urban ambient air. The TSP levels inside stations and outdoors are poorly correlated, indicating that TSP levels in the metro system are mainly influenced by internal sources.Regarding metal concentrations, the most enriched element in TSP samples was Fe, the levels of which ranged from 36 (25% percentile) to 86 μg m−3 (75% percentile) in Line C stations, while in Line B ones they varied between 8 μg m−3 (25% percentile) and 46 μg m−3 (75% percentile). As a comparison, Fe concentrations in ambient air oscillated between 0.7 μg m−3 (25% percentile) and 1.2 μg m−3 (75% percentile). Other enriched elements include Cu and Zn. With regard to their sources, Fe and Cu have been related to processes taking place inside the subway system, while Zn has been associated with outdoor vehicular traffic. Additionally, concerns about possible health implications based on comparisons to various indoor air quality limits and available toxicological information are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号