首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst‐case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single‐species assessment that is well‐integrated with a broader measurement of impacts on PD owing to climate change and other factors.  相似文献   

2.
Abstract:  Genetic information is becoming an influential factor in determining whether species, subspecies, and distinct population segments qualify for protection under the U.S. Endangered Species Act. Nevertheless, there are currently no standards or guidelines that define how genetic information should be used by the federal agencies that administer the act. I examined listing decisions made over a 10-year period (February 1996–February 2006) that relied on genetic information. There was wide variation in the genetic data used to inform listing decisions in terms of which genomes (mitochondrial vs. nuclear) were sampled and the number of markers (or genetic techniques) and loci evaluated. In general, whether the federal agencies identified genetic distinctions between putative taxonomic units or populations depended on the type and amount of genetic data. Studies that relied on multiple genetic markers were more likely to detect distinctions, and those organisms were more likely to receive protection than studies that relied on a single genetic marker. Although the results may, in part, reflect the corresponding availability of genetic techniques over the given time frame, the variable use of genetic information for listing decisions has the potential to misguide conservation actions. Future management policy would benefit from guidelines for the critical evaluation of genetic information to list or delist organisms under the Endangered Species Act.  相似文献   

3.
Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration—requiring prompt action rather than awaiting better information. We developed an expert‐opinion threat‐based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species‐specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species’ extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data‐limited species likely to be affected by global‐scale threats. Incorporación del Cambio Climático y Oceánico en Estudios de Riesgo de Extinción para 82 Especies de Coral  相似文献   

4.
Abstract:  Recent population expansion of Barred Owls (  Strix varia ) into western North America has led to concern that they may compete with and further harm the Northern Spotted Owl (  S. occidentalis caurina ), which is already listed as threatened under the U.S. Endangered Species Act (ESA). Because they hybridize, there is a legal need under the ESA for forensic identification of both species and their hybrids. We used mitochondrial control-region DNA and amplified fragment-length polymorphism (AFLP) analyses to assess maternal and biparental gene flow in this hybridization process. Mitochondrial DNA sequences (524 base pairs) indicated large divergence between Barred and Spotted Owls (13.9%). Further, the species formed two distinct clades with no signs of previous introgression. Fourteen diagnostic AFLP bands also indicated extensive divergence between the species, including markers differentiating them. Principal coordinate analyses and assignment tests clearly supported this differentiation. We found that hybrids had unique genetic combinations, including AFLP markers from both parental species, and identified known hybrids as well as potential hybrids with unclear taxonomic status. Our analyses corroborated the findings of extensive field studies that most hybrids genetically sampled resulted from crosses between female Barred Owls and male Spotted Owls. These genetic markers make it possible to clearly identify these species as well as hybrids and can now be used for research, conservation, and law enforcement. Several legal avenues may facilitate future conservation of Spotted Owls and other ESA-listed species that hybridize, including the ESA similarity-of-appearance clause (section 4[e]) and the Migratory Bird Treaty Act. The Migratory Bird Treaty Act appears to be the most useful route at this time.  相似文献   

5.
Objectives for Multiple-Species Conservation Planning   总被引:2,自引:0,他引:2  
Abstract:  The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat. Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities had to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.  相似文献   

6.
The International Union for Conservation of Nature's Red List of Threatened Species (IUCN Red List) is the world's most comprehensive information source on the global conservation status of species. Governmental agencies and conservation organizations increasingly rely on IUCN Red List assessments to develop conservation policies and priorities. Funding agencies use the assessments as evaluation criteria, and researchers use meta-analysis of red-list data to address fundamental and applied conservation science questions. However, the circa 143,000 IUCN assessments represent a fraction of the world's biodiversity and are biased in regional and organismal coverage. These biases may affect conservation priorities, funding, and uses of these data to understand global patterns. Isolated oceanic islands are characterized by high endemicity, but the unique biodiversity of many islands is experiencing high extinction rates. The archipelago of Hawaii has one of the highest levels of endemism of any floristic region; 90% of its 1367 native vascular plant taxa are classified as endemic. We used the IUCN's assessment of the complete single-island endemic (SIE) vascular plant flora of Kauai, Hawaii, to assess the proportion and drivers of decline of threatened plants in an oceanic island setting. We compared the IUCN assessments with federal, state, and other local assessments of Kauai species or taxa of conservation concern. Finally, we conducted a preliminary assessment for all 1044 native vascular plants of Hawaii based on IUCN criterion B by estimating area of occupancy, extent of occurrence, and number of locations to determine whether the pattern found for the SIE vascular flora of Kauai is comparable to the native vascular flora of the Hawaiian Islands. We compared our results with patterns observed for assessments of other floras. According to IUCN, 256 SIE vascular plant taxa are threatened with extinction and 5% are already extinct. This is the highest extinction risk reported for any flora to date. The preliminary assessment of the native vascular flora of Hawaii showed that 72% (753 taxa) is threatened. The flora of Hawaii may be one of the world's most threatened; thus, increased and novel conservation measures in the state and on other remote oceanic islands are urgently needed.  相似文献   

7.
Recovery planning for species listed under the U.S. Endangered Species Act has been hampered by a lack of consistency and transparency, which can be improved by implementing a standardized approach for evaluating species status and developing measurable recovery criteria. However, managers lack an assessment method that integrates threat abatement and can be used when demographic data are limited. To help meet these needs, we demonstrated an approach for evaluating species status based on habitat configuration data. We applied 3 established persistence measures (patch occupancy, metapopulation capacity, and proportion of population lost) to compare 2 conservation strategies (critical habitat designated by the U.S. Fish and Wildlife Service and the Forest Service's Carbonate Habitat Management Strategy) and 2 threat scenarios (maximum limestone mining, removal of all habitat in areas with mining claims; minimum mining, removal of habitat only in areas with existing operations and high‐quality ore) against a baseline of existing habitat for 3 federally listed plant species. Protecting all area within the designated critical habitat maintained a similar level (83.9–99.9%) of species persistence as the baseline, whereas maximum mining greatly reduced persistence (0.51–38.4% maintained). The 3 persistence measures provided complementary insights reflecting different aspects of habitat availability (total area, number of patches, patch size, and connectivity). These measures can be used to link recovery criteria developed following the 3 R principles (representation, redundancy, and resilience) to the resulting improvements in species viability. By focusing on amount and distribution of habitat, our method provides a means of assessing the status of data‐poor species to inform decision making under the Endangered Species Act.  相似文献   

8.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

9.
Assessing temporal changes in species extinction risk is necessary for measuring conservation success or failure and for directing conservation resources toward species or regions that would benefit most. Yet, there is no long‐term picture of genuine change that allows one to associate species extinction risk trends with drivers of change or conservation actions. Through a review of 40 years of IUCN‐related literature sources on species conservation status (e.g., action plans, red‐data books), we assigned retrospective red‐list categories to the world's carnivores and ungulates (2 groups with relatively long generation times) to examine how their extinction risk has changed since the 1970s. We then aggregated species’ categories to calculate a global trend in their extinction risk over time. A decline in the conservation status of carnivores and ungulates was underway 40 years ago and has since accelerated. One quarter of all species (n = 498) moved one or more categories closer to extinction globally, while almost half of the species moved closer to extinction in Southeast Asia. The conservation status of some species improved (toward less threatened categories), but for each species that improved in status 8 deteriorated. The status of large‐bodied species, particularly those above 100 kg (including many iconic taxa), deteriorated significantly more than small‐bodied species (below 10 kg). The trends we found are likely related to geopolitical events (such as the collapse of Soviet Union), international regulations (such as CITES), shifting cultural values, and natural resource exploitation (e.g., in Southeast Asia). Retrospective assessments of global species extinction risk reduce the risk of a shifting baseline syndrome, which can affect decisions on the desirable conservation status of species. Such assessments can help conservationists identify which conservation policies and strategies are or are not helping safeguard biodiversity and thus can improve future strategies. Una Evaluación Retrospectiva de la Declinación Global de Carnívoros y Ungulados  相似文献   

10.
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a species extinction risk assessment tool, has been guiding conservation efforts for over 5 decades. It is widely assumed to have been instrumental in preventing species from moving closer to extinction and driving recoveries. However, the impact of the IUCN Red List in guiding conservation has not been evaluated. We conducted, transcribed, and coded interviews with experts who use the IUCN Red List across a range of sectors to understand how the list is used in conservation. We developed a theory of change to illustrate how and why change is expected to occur along causal pathways contributing to the long-term goal of the IUCN Red List and an evaluation framework with indicators for measuring the impact of the IUCN Red List in generating scientific knowledge, raising awareness among stakeholders, designating priority conservation sites, allocating funding and resources, influencing development of legislation and policy, and guiding targeted conservation action (key themes). Red-list assessments were the primary input leading to outputs (scientific knowledge, raised awareness), outcomes (better informed priority setting, access to funding and resource availability, improved legislation and policy), and impact (implemented conservation action leading to positive change) that have resulted in achievement of IUCN Red List goals. To explore feasibility of attributing the difference made by the IUCN Red List across themes, we studied increased scientific knowledge, raised awareness, access to funding and resource allocation, and increased conservation activity. The feasibility exploration showed increased scientific knowledge over time identified through positive trends in publications referring to the IUCN Red List in the literature; raised awareness of the list following high IUCN activity identified by peaks in online search activity; an increased proportion of conservation funding bodies requesting IUCN Red List status in the application process; and, based on interviews with Amphibian Specialist Group members, red-list assessments were essential in connecting relevant stakeholders and ensuring conservation action. Although we identified the IUCN Red List as a vital tool in global conservation efforts, it was challenging to measure specific impacts because of its ubiquitous nature. We are the first to identify the influence of the IUCN Red List on conservation.  相似文献   

11.
Abstract:  The World Conservation Union (IUCN) has developed guidelines that enable the assessment of extinction risk at a regional scale. We used these guidelines to assess the extinction risk of birds in the United Kingdom for comparison with an existing assessment of conservation status. Sixty-four species were categorized as regionally threatened, of which 12 were critically endangered. The categorizations of the 223 species assessed agreed broadly with those from the existing U.K. system, which considers more than extinction risk, thus giving a more complete assessment of conservation status. There was, however, a tendency for the IUCN process to give higher risk status to edge-of-range species (some of which are relatively recent colonists considered of comparatively low conservation concern) and low status to those that have declined substantially but remain common (such as many farmland birds, the focus of considerable conservation effort in the United Kingdom). The final red list depended heavily on the subjective decisions made during the assessment process. An alternative interpretation of the guidelines could have resulted in as many as 19 or as few as 6 species being listed as critically endangered. We recommend the revision of the IUCN guidelines to reduce this subjectivity, in particular with respect to the effect of extralimital populations on the likelihood of regional extinction, and hence the potential for variation in the manner of application between regional red-list assessors. Preventing extinction does not have to be the principal driving force behind conservation action at a regional scale if the continuance of a species is safeguarded in other regions.  相似文献   

12.
Abstract:  The U.S. Endangered Species Act (ESA) requires designation of critical habitat concurrent with species listing. The U.S. Fish and Wildlife Service often has not designated critical habitat, based on the legal exceptions in the ESA of "not prudent" or "not determinable." This lack of habitat designation has led to numerous lawsuits and court orders to designate critical habitat for listed species. Court-mediated implementation of critical habitat is costly and delays listing for at-risk species. Legal, policy, judicial, and biological issues all contribute to the current inability of the law as enforced to lead to timely and cost-effective critical habitat designation. Although increased appropriations and delaying critical habitat designation until recovery planning have been proposed as solutions, we find that it will be essential to change the critical-habitat guidelines to a decision-analysis framework to make critical habitat scientifically and legally workable as a conservation tool.  相似文献   

13.
The U.S. Endangered Species Act (ESA) requires that the “best available scientific and commercial data” be used to protect imperiled species from extinction and preserve biodiversity. However, it does not provide specific guidance on how to apply this mandate. Scientific data can be uncertain and controversial, particularly regarding species delineation and hybridization issues. The U.S. Fish and Wildlife Service (FWS) had an evolving hybrid policy to guide protection decisions for individuals of hybrid origin. Currently, this policy is in limbo because it resulted in several controversial conservation decisions in the past. Biologists from FWS must interpret and apply the best available science to their recommendations and likely use considerable discretion in making recommendations for what species to list, how to define those species, and how to recover them. We used semistructured interviews to collect data on FWS biologists’ use of discretion to make recommendations for listed species with hybridization issues. These biologists had a large amount of discretion to determine the best available science and how to interpret it but generally deferred to the scientific consensus on the taxonomic status of an organism. Respondents viewed hybridization primarily as a problem in the context of the ESA, although biologists who had experience with hybridization issues were more likely to describe it in more nuanced terms. Many interviewees expressed a desire to continue the current case‐by‐case approach for handling hybridization issues, but some wanted more guidance on procedures (i.e., a “flexible” hybrid policy). Field‐level information can provide critical insight into which policies are working (or not working) and why. The FWS biologists’ we interviewed had a high level of discretion, which greatly influenced ESA implementation, particularly in the context of hybridization.  相似文献   

14.
The U.S. Endangered Species Act grants protection to species, subspecies, and "distinct population segments" of vertebrate species. Historically, Congress included distinct population segments into endangered species legislation to enable the U.S. Fish and Wildlife Service to implement a flexible and pragmatic approach in listing populations of vertebrate species. Recently, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service have proposed a policy that would narrowly define distinct population segments as evolutionarily significant units based on morphological and genetic distinctiveness between populations. Historically, the power to list species or populations as distinct population segments has been used to tailor management practices to unique circumstances; grant varied levels of protection in different parts of a species' range; protect species from extinction in significant portions of their ranges as well as to protect populations that are unique evolutionary entities. A strict redefinition of distinct population segments as evolutionarily significant units will compromise management efforts because the role of demographic and behavioral data will be reduced. Furthermore, strictly cultural, economic, or geographic justifications for listing populations as threatened or endangered will be greatly curtailed.  相似文献   

15.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

16.
Despite its successes, the U.S. Endangered Species Act (ESA) has proven challenging to implement due to funding limitations, workload backlog, and other problems. As threats to species survival intensify and as more species come under threat, the need for the ESA and similar conservation laws and policies in other countries to function efficiently has grown. Attempts by the U.S. Fish and Wildlife Service (USFWS) to streamline ESA decisions include multispecies recovery plans and habitat conservation plans. We address species status assessment (SSA), a USFWS process to inform ESA decisions from listing to recovery, within the context of multispecies and ecosystem planning. Although existing SSAs have a single-species focus, ecosystem-based research can efficiently inform multiple SSAs within a region and provide a foundation for transition to multispecies SSAs in the future. We considered at-risk grassland species and ecosystems within the southeastern United States, where a disproportionate number of rare and endemic species are associated with grasslands. To initiate our ecosystem-based approach, we used a combined literature-based and structured World Café workshop format to identify science needs for SSAs. Discussions concentrated on 5 categories of threats to grassland species and ecosystems, consistent with recommendations to make shared threats a focus of planning under the ESA: (1) habitat loss, fragmentation, and disruption of functional connectivity; (2) climate change; (3) altered disturbance regimes; (4) invasive species; and (5) localized impacts. For each threat, workshop participants identified science and information needs, including database availability, research priorities, and modeling and mapping needs. Grouping species by habitat and shared threats can make the SSA process and other planning processes for conservation of at-risk species worldwide more efficient and useful. We found a combination of literature review and structured discussion effective for identifying the scientific information and analysis needed to support the development of multiple SSAs. Article impact statement: Species status assessments can be improved by an ecosystem-based approach that groups imperiled species by shared habitats and threats.  相似文献   

17.
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro  相似文献   

18.
Accounting for Uncertainty in Making Species Protection Decisions   总被引:1,自引:0,他引:1  
Abstract:  Uncertainty gives rise to two decision errors in implementing the U.S. Endangered Species Act: listing species that are not in danger of extinction and delisting species that are in danger of extinction. I evaluated four methods (minimum standard, precautionary principle, minimax regret criterion, adaptive management) for deciding whether to list or delist a species when there is uncertainty about how those decisions are likely to influence survival of the species. A safe minimum standard criterion preserves some minimum amount or safe standard (population) of a species unless maintaining that amount generates unacceptable social cost. The precautionary principle favors not delisting a species when there is insufficient evidence on the efficacy of state management plans for protecting them. A minimax regret criterion selects the delisting decision that minimizes the maximum loss likely to occur under alternative ecosystem states. When the cost of making a correct decision is less than the cost of making an incorrect decision, the minimax regret criteria indicates that delisting is the optimal decision. Active adaptive management employs statistically valid experiments to test hypotheses about the likely impacts of delisting decisions. Safe minimum standard and minimax regret criterion are not compatible with the U.S. Endangered Species Act. The precautionary principle comes closest to describing how federal agencies make delisting decisions. Active adaptive management is scientifically superior to the other methods but is costly and time consuming and may not be compatible with the U.S. National Environmental Policy Act.  相似文献   

19.
Local extinction of native species and colonization of non-native species are commonly invoked as responsible for changes in species similarity among biotas of different regions. In this study we used a model of species similarity between islands to assess the emergent, and unexplored, effects of changes in colonization by native species, extinction of non-native species, and propagule pressure on species similarity among insular communities. The model predicts that extinction probability of endemic species has a positive but asymptotic effect on species similarity, which is exacerbated by increasing colonization and reducing extinction of non-native species. Species similarity tends to increase with increasing colonization probability by non-native species, however this effect may be reduced, or even reverted, when the islands are exposed to an elevated number of non-native species that are prone to extinction, high levels of endemic species loss, and an initially large number of native species shared between islands. Species similarity was positively affected by the propagule pressure rate of non-native species only when their colonization and extinction probabilities were large and small enough, respectively. A negative effect of propagule pressure rate can be caused by an increase in the pool size of non-native species, which involves the introduction of different species into different islands, promoting biotic differentiation between islands. Our results indicate that the interactions between colonization, extinction and species pool lead to nonlinear responses and unexpected scenarios of biotic change. In order to validate model predictions, future research programs should focus on understanding the dynamics on such complex meta-communities where coexist native, non-native and endemic species.  相似文献   

20.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号