首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Over 35,000 tonnes of food waste are generated from high concentration point sources (i.e., restaurants, hospitals and markets) in metropolitan Adelaide (Australia) each year. Anaerobic digestion is a preferred method of treatment to degrade highly putrescible waste streams such as food waste due its high methane potential. To maximise methane yield, a sequential batch anaerobic system was chosen as the most appropriate system. Two sets of sequential batch systems consisting of mature and start-up reactors in triplicate exchanged leachate. One set exchanged twice as much leachate by volume as the other set to determine the effects of different leachate exchange volumes. Results show that by increasing the leachate volume between mature and start-up reactors, the time to degrade feedstock decreases, but total methane generation yields did not markedly differ, being 229LCH4 kg(-1) VSadded and 214LCH4 kg(-1) VSadded. Process parameters used to determine when to cease leachate exchange in start-up reactors were a pH of 6.5 and methane generation rate of >0.5LCH4 kg(-1) VSadded day(-1). Changes in carbon dioxide and methane biogas composition in the mature reactors reflected process stress caused by the addition of leachate with high VFA concentrations from the start-up reactors and indicate there may be limits to leachate exchange rates and subsequent loading of mature reactors.  相似文献   

2.
Extensive investigations of leachates and solid waste samples for organic sum parameters and environmentally relevant organic compounds were carried out at the hazardous waste landfill of Raindorf, which is operated in accordance with German Technical Instructions on Waste (TI Waste). The measurements showed that the majority of the waste samples contained only minor amounts of phenols, highly volatile chlorinated organic compounds (VCHC), benzene, toluene, ethylbenzene and xylene (BTEX), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). The concentrations ranged from less than 100μg/kg−1up to 1000μg/kg−1of dry substance. Only hydrocarbons were detected in higher concentrations (mg to g kg−1of dry substance). In most leachate and gas samples taken at the landfill, the concentrations of the abovementioned parameters were close to or even below the detection limit. The measurement of organic single compounds underlined the usefulness of the sum parameters, adsorbable organic halogen compounds and phenol index, for the estimation of the total amount of these substances. A comparison of organic sum parameter concentrations measured in leachates from landfills of differing ages indicates that the application of TI Waste leads to a reduction of the organic load in the leachate.  相似文献   

3.
In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded.We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.  相似文献   

4.
The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24h at -20 degrees C and then thawed for 12h at 25 degrees C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9g/l on day 3 in the control and 18.9g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7g/l on day 3 in the control and 17.0g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 degrees C for 1h. However, estimation of energy required either to heat the suspended food waste to 150 degrees C or to freeze the same quantity of food waste to -20 degrees C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.  相似文献   

5.
Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume).  相似文献   

6.
Hydrolytic, acetogenic and methanogenic bacteria are required for the conversion of refuse to methane in landfills. In order to identify sources of these trophic groups in refuse, the total anaerobic population and the sub-populations of cellulolytic, hemicellulolytic, butyrate catabolizing acetogenic, and acetate- and H2-CO2-utilizing methanogenic bacteria as present on grass, leaves, branches, food waste, whole refuse and two landfill cover soils were enumerated by the most probable number (MPN) technique. Total anaerobes ranged from 103cells per dry gram in cover soil to 109in grass, food waste and fresh refuse. Hemicellulolytics ranged from 160 cells per dry gram in cover soil to 109in grass. The highest cellulolytic population was measured on branches (316 cells per dry gram), while the maximum acetogenic population was measured on leaves (2.5×104). The highest methanogen populations were measured on leaves (6.3×103) and one of two fresh refuse samples (105). Yard waste was the major carrier of the trophic groups required for refuse decomposition, while the cover soils tested did not represent major inputs of the requisite bacteria to landfills.  相似文献   

7.
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13–39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14–36 Nm3/ton separately collected solid organic household waste. Also, 13–32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.1 Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste.  相似文献   

8.
The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis.  相似文献   

9.
An essential preliminary step in municipal solid waste (MSW) management is the accurate determination of the quantities and composition of the wastes. The purpose of this study was to test a procedure for the determination of these parameters at the source of generation (houses), rather than getting such data at transfer stations or disposal sites, as usually done in most previous studies. The average generation rate in kg per capita day−1and percentages of various components of residential solid waste in Abu Dhabi City were determined by carrying out a statistically designed sampling survey. This survey covered 40 houses with different socio-economic levels and totalled 840 samples. The study showed an average generation rate of 1.76 kg per capita day−1. Linear regression analysis revealed that this rate was dependent on the income level with an increase of about 35% for the high income residents over the average rate. The waste contained approximately 50% food waste. Frequency distribution analysis of waste composition data indicated that the food waste component is normally distributed, whereas the other components do not show a normal distribution pattern.  相似文献   

10.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   

11.
A three-compartment system, comprising a landfill column with fresh municipal solid waste, a column with a well-decomposed refuse layer as methane producer, and a sequential batch reactor as ex situ nitrifying reactor, was employed to remove nitrogen from municipal solid waste leachate. Since food waste comprised a major portion of refuse collected in Shanghai, an intense hydrolysis reaction occurred and caused the rapid accumulation of ammonia nitrogen (NH(3)-N) and total organic carbon in the leachate. This paper discusses the role of the three mentioned units and the design and operation of the proposed system. With most NH(3)-N being converted to nitrite nitrogen (NO(2)(-)-N) or nitrate nitrogen (NO(3)(-)-N) by the nitrifying reactor, and with the well-decomposed refuse layer transforming most dissolved organic compounds to CO(2), carbonates and methane, it was found that the fresh refuse column could efficiently denitrify the hydrolyzed nitrogen to N(2) gas. The role of the three mentioned units and comments on the design and operation of the proposed system are also discussed.  相似文献   

12.
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.  相似文献   

13.
This study was to find out potential of methane yield on food waste and food waste leachate as biomass in Korea. The seven biogasification facilities were selected for comparison of theoretical methane yield and actual methane yield. The theoretical methane yield was calculated based on organic constituents (carbohydrate, protein, fat) and based on element analysis. The actual methane yield was investigated based on volatile solids and CODcr. Theoretical methane yields by organic constituents were 0.52 Sm3CH4/kg VS and 0.35 Sm3CH4/kg CODcr and these by element analysis were 0.53 Sm3CH4/kg VS and 0.36 Sm3CH4/kg CODcr. Actual methane yields were 0.36 Sm3CH4/kg VSin and 0.26 Sm3CH4/kg CODcrin. Considering the average removal efficiency of organic materials of seven FWL biogasification facilities, actual methane yields were 0.48 Sm3CH4/kg VSrem and 0.33 Sm3CH4/kg CODcrrem. Methane yield by organic constituents is very similar to that by element analysis and actual methane yields of volatile solids and CODcr were similar to theoretical value. The actual methane yield in this study showed approximated boundary values with previous other references which conducted in lab-scale or biochemical methane potential (BMP) tests. In conclusion, Korean food waste and food waste leachate have sufficient potential of methane yield in the ongoing biogasification facilities.  相似文献   

14.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   

15.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

16.
This study investigated the effect of long chain fatty acids (LCFAs) removal as a pretreatment prior to anaerobic digestion on the production of methane from food waste. The results showed that the anaerobic digestion of food waste containing 1.6 g COD/L of LCFAs was not inhibited (4 days lag-time, 78.3 % methane recovery in 35 days) compared to that of lipid free food waste (3 days lag time, 72.5 % methane recovery in 35 days); however, some unsaturated LCFAs, which are toxic to microorganism, were accumulated in the batch anaerobic digestion reactor. Meanwhile, in a methanogenic activity study, the activity of methanogens was observed to be linearly inhibited by the presence of more than 1 g COD/L of LCFAs. The possibility of the accumulation of unsaturated LCFAs in the reactor should be considered when operating a large-scale continuous system.  相似文献   

17.
The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained.  相似文献   

18.
Two fresh refuse bioreactors (F1 and F2) were operated under semi-aerobic and anaerobic conditions, respectively. The leachate from the bioreactors F1 and F2 was introduced into the aged refuse bioreactors (A1 and A2), and the effluent from A1 and A2 was subsequently recirculated into F1 and F2, respectively. The effect of the semi-aerobic recirculation process on refuse degradation was investigated, comparing it with that of the anaerobic recirculation process. Results indicate that the semi-aerobic recirculation process can increase the accumulated net production of leachate and promote evaporation. The accumulated net production of refuse in F1 is 320 mL/kg and that of F2 is 248 mL/kg, with leachate reduction amounting to 315 and 244 mL/kg refuse, respectively. The leachate quantity reduction of semi-aerobic and anaerobic leachate recirculation process accounted for 98.4% and 98.3% of the accumulated net production of leachate, respectively. The semi-aerobic leachate recirculation process can improve the biodegradation of organic matter from fresh refuse and the reduction rate of the pollutant concentration in leachate. This should shorten considerably the time required to meet the discharge standard and the time of stabilization of the refuse as observed in the anaerobic recirculation process. It was predicted that the COD concentration of leachate from the anaerobic recirculation process would reach 1000 mg/L in the anaerobic recirculation process after 2.2 years, as for semi-aerobic leachate recirculation process it is about 100 days. Compared with anaerobic recirculation process, the semi-aerobic recirculation process is more effective on NH3-N transformation and TN removal. The NH3-N and TN concentration of F1 is far below those of F2 at the end of our experiment. Refuse settlement in the semi-aerobic recirculation process was faster than that in the anaerobic recirculation process. At the end of the experiment, refuse settlement ratios in the semi-aerobic and anaerobic bioreactors were 33.5% and 18%, respectively.  相似文献   

19.
This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS?1, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.  相似文献   

20.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号