首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
BackgroundPrevious research has identified teenage drivers as having an increased risk for motor-vehicle crash injury compared with older drivers, and rural roads as having increased crash severity compared with urban roads. Few studies have examined incidence and characteristics of teen driver-involved crashes on rural and urban roads.MethodsAll crashes involving a driver aged 10 through 18 were identified from the Iowa Department of Transportation crash data from 2002 through 2008. Rates of overall crashes and fatal or severe injury crashes were calculated for urban, suburban, rural, and remote rural areas. The distribution of driver and crash characteristics were compared between rural and urban crashes. Logistic regression was used to identify driver and crash characteristics associated with increased odds of fatal or severe injury among urban and rural crashes.ResultsFor younger teen drivers (age 10 through 15), overall crash rates were higher for more rural areas, although for older teen drivers (age 16 through 18) the overall crash rates were lower for rural areas. Rural teen crashes were nearly five times more likely to lead to a fatal or severe injury crash than urban teen crashes. Rural crashes were more likely to involve single vehicles, be late at night, involve a failure to yield the right-of-way and crossing the center divider.ConclusionsIntervention programs to increase safe teen driving in rural areas need to address specific risk factors associated with rural roadways.Impact on IndustryTeen crashes cause lost work time for teen workers as well as their parents. Industries such as safety, health care, and insurance have a vested interest in enhanced vehicle safety, and these efforts should address risks and injury differentials in urban and rural roadways.  相似文献   

2.
ObjectiveCrash injury results from complex interaction among factors related to at-fault driver's behavior, vehicle characteristics, and road conditions. Identifying the significance of these factors which affect crash injury severity is critical for improving traffic safety. A method was developed to explore the relationship based on crash data collected on rural two-lane highways in China.MethodsThere were 673 crash records collected on rural two-lane highways in China. A partial proportional odds model was developed to examine factors influencing crash injury severity owing to its high ability to accommodate the ordered response nature of injury severity. An elasticity analysis was conducted to quantify the marginal effects of each contributing factor.ResultsThe results show that nine explanatory variables, including at-fault driver's age, at-fault driver having a license or not, alcohol usage, speeding, pedestrian involved, type of area, weather condition, pavement type, and collision type, significantly affect injury severity. In addition to alcohol usage and pedestrian involved, others violate the proportional odds assumption. At-fault driver's age of 25–39 years, alcohol usage, speeding, pedestrian involved, pavement type of asphalt, and collision type of angle are found to be increased crash injury severity.Practical ApplicationsThe developed logit model has demonstrated itself efficient in identifying the effect of contributing factors on the crash injury severity.  相似文献   

3.

Introduction

Highway crash occurrence is a leading cause of unnatural deaths, and highway agencies continually seek to identify engineering measures to reduce crashes and to assess the efficacy of such measures. Most past studies on the effectiveness of roadway improvements in terms of crash reduction considered all rural two-lane sections as a single category of roads. However, it may be hypothesized that the differences in the mobility and accessibility characteristics that are reflected in (and due to) the different design standards between different functional subclasses in the rural two-lane highway system can lead to differences in efficacies of safety improvements at these subclasses. This paper investigates the efficacy of roadway improvements, in terms of crash reduction, at the various subclasses of rural two-lane highways.

Methods

An empirical analysis of safety performance at each of the three subclasses of rural two-lane highways was carried out using the negative binomial modeling technique. For each subclass, crash prediction models were developed separately for the three levels of crash severity: property-damage only, injury, and fatal/injury. The crash factors that were considered include lane width, shoulder width, pavement surface friction, pavement condition, and horizontal and vertical alignments. After having developed the safety performance functions, the effectiveness (in terms of the extent of crash reduction, for different levels of crash severity) of highway safety enhancements at each highway subclass were determined using the theoretical concepts established in past literature. These enhancements include widening lanes, widening shoulders, enhancing pavement surface friction, and improving the vertical or horizontal alignment.

Results and Conclusion

The study found that there is empirical evidence to justify the decomposition of the family of rural two-lane roads into its constituent subclasses for purposes of analyzing the effectiveness of safety enhancement projects and thus to avoid underestimation or overestimation of benefits of safety improvements at this class of highways.  相似文献   

4.
Objective: Most of the extensive research dedicated to identifying the influential factors of hit-and-run (HR) crashes has utilized typical maximum likelihood estimation binary logit models, and none have employed real-time traffic data. To fill this gap, this study focused on investigating factors contributing to HR crashes, as well as the severity levels of HR.

Methods: This study analyzed 4-year crash and real-time loop detector data by employing hierarchical Bayesian models with random effects within a sequential logit structure. In addition to evaluation of the impact of random effects on model fitness and complexity, the prediction capability of the models was examined. Stepwise incremental sensitivity and specificity were calculated and receiver operating characteristic (ROC) curves were utilized to graphically illustrate the predictive performance of the model.

Results: Among the real-time flow variables, the average occupancy and speed from the upstream detector were observed to be positively correlated with HR crash possibility. The average upstream speed and speed difference between upstream and downstream speeds were correlated with the occurrence of severe HR crashes. In addition to real-time factors, other variables found influential for HR and severe HR crashes were length of segment, adverse weather conditions, dark lighting conditions with malfunctioning street lights, driving under the influence of alcohol, width of inner shoulder, and nighttime.

Conclusions: This study suggests the potential traffic conditions of HR and severe HR occurrence, which refer to relatively congested upstream traffic conditions with high upstream speed and significant speed deviations on long segments. The above findings suggest that traffic enforcement should be directed toward mitigating risky driving under the aforementioned traffic conditions. Moreover, enforcement agencies may employ alcohol checkpoints to counter driving under the influence (DUI) at night. With regard to engineering improvements, wider inner shoulders may be constructed to potentially reduce HR cases and street lights should be installed and maintained in working condition to make roads less prone to such crashes.  相似文献   


5.
IntroductionPrior research has shown the probability of a crash occurring on horizontal curves to be significantly higher than on similar tangent segments, and a disproportionally higher number of curve-related crashes occurred in rural areas. Challenges arise when analyzing the safety of horizontal curves due to imprecision in integrating information as to the temporal and spatial characteristics of each crash with specific curves.MethodsThe second Strategic Highway Research Program(SHRP 2) conducted a large-scale naturalistic driving study (NDS),which provides a unique opportunity to better understand the contributing factors leading to crash or near-crash events. This study utilizes high-resolution behavioral data from the NDS to identify factors associated with 108 safety critical events (i.e., crashes or near-crashes) on rural two-lane curves. A case-control approach is utilized wherein these events are compared to 216 normal, baseline-driving events. The variables examined in this study include driver demographic characteristics, details of the traffic environment and roadway geometry, as well as driver behaviors such as in-vehicle distractions.ResultsLogistic regression models are estimated to discern those factors affecting the likelihood of a driver being crash-involved. These factors include high-risk behaviors, such as speeding and visual distractions, as well as curve design elements and other roadway characteristics such as pavement surface conditions.ConclusionsThis paper successfully integrated driver behavior, vehicle characteristics, and roadway environments into the same model. Logistic regression model was found to be an effective way to investigate crash risks using naturalistic driving data.Practical ApplicationsThis paper revealed a number of contributing factors to crashes on rural two-lane curves, which has important implications in traffic safety policy and curve geometry design. This paper also discussed limitations and lessons learned from working with the SHRP 2 NDS data. It will benefit future researchers who work with similar type of data.  相似文献   

6.
Introduction: The state of Wyoming, like other western United States, is characterized by mountainous terrain. Such terrain is well noted for its severe downgrades and difficult geometry. Given the specific challenges of driving in such difficult terrain, crashes with severe injuries are bound to occur. The literature is replete with research about factors that influence crash injury severity under different conditions. Differences in geometric characteristics of downgrades and mechanics of vehicle operations on such sections mean different factors may be at play in impacting crash severity in contrast to straight, level roadway sections. However, the impact of downgrades on injury severity has not been fully explored in the literature. This study is thus an attempt to fill this research gap. In this paper, an investigation was carried out to determine the influencing factors of crash injury severities of downgrade crashes. Method: Due to the ordered nature of the response variable, the ordered logit model was chosen to investigate the influencing factors of crash injury severities of downgrade crashes. The model was calibrated separately for single and multiple-vehicle crashes to ensure the different factors influencing both types of crashes were captured. Results: The parameter estimates were as expected and mostly had signs consistent with engineering intuition. The results of the ordered model for single-vehicle crashes indicated that alcohol, gender, road condition, vehicle type, point of impact, vehicle maneuver, safety equipment use, driver action, and annual average daily traffic (AADT) per lane all impacted the injury severity of downgrade crashes. Safety equipment use, lighting conditions, posted speed limit, and lane width were also found to be significant factors influencing multiple-vehicle downgrade crashes. Injury severity probability plots were included as part of the study to provide a pictorial representation of how some of the variables change in response to each level of crash injury severity. Conclusion: Overall, this study provides insights into contributory factors of downgrade crashes. The literature review indicated that there are substantial differences between single- and multiple vehicle crashes. This was confirmed by the analysis which showed that mostly, separate factors impacted the crash injury severity of the two crash types. Practical applications: The results of this study could be used by policy makers, in other locations, to reduce downgrade crashes in mountainous areas.  相似文献   

7.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

8.
9.
IntroductionTruck crashes contribute to a large number of injuries and fatalities. This study seeks to identify the contributing factors affecting truck crash severity using 2010 to 2016 North Dakota and Colorado crash data provided by the Federal Motor Carrier Safety Administration.MethodTo fulfill a gap of previous studies, broad considerations of company and driver characteristics, such as company size and driver’s license class, along with vehicle types and crash characteristics are researched. Gradient boosting, a data mining technique, is applied to comprehensively analyze the relationship between crash severities and a set of heterogeneous risk factors.ResultsTwenty five variables were tested and 22 of them are identified as significant variables contributing to injury severities, however, top 11 variables account for more than 80% of injury forecasting. The relative variable importance analysis is conducted and furthermore marginal effects of all contributing factors are also illustrated in this research. Several factors such as trucking company attributes (e.g., company size), safety inspection values, trucking company commerce status (e.g., interstate or intrastate), time of day, driver’s age, first harmful events, and registration condition are found to be significantly associated with crash injury severity. Even though most of the identified contributing factors are significant for all four levels of crash severity, their relative importance and marginal effect are all different.ConclusionsFor the first time, trucking company and driver characteristics are proved to have significant impact on truck crash injury severity. Some of the results in this study reinforce previous studies’ conclusions.Practical applicationsFindings in this study can be helpful for transportation agencies to reduce injury severity, and develop efficient strategies to improve safety.  相似文献   

10.
Introduction: Safety of horizontal curves on rural two-lane, two-way undivided roadways is not fully explored. This study investigates factors that impact injury severity of such crashes. Method: To achieve the aim of this paper, issues associated with police-reported crash data such as unobserved heterogeneity and temporal stability need to be accounted for. Hence, a mixed logit model was estimated, while heterogeneity in means and variances is investigated by considering four injury severity outcomes for drivers: severe injury, moderate injury, possible injury, and no injury. Crash data for the period between 2011 and 2016 for crashes that occurred in the state of Oregon was analyzed. Temporal stability in factors determining the injury severity was investigated by identifying three time periods through splitting crash data into 2011–2012, 2013–2014, and 2015–2016. Results: Despite some factors affecting injuries in all specified time periods, the values of the marginal effects showed relative differences. The estimation results revealed that some factors increased the risk of being involved in severe injury crashes, including head-on collisions, drunk drivers, failure to negotiate curves, older drivers, and exceeding the speed limits. Conclusions: The hypothesis that attributes of injury severity are temporally stable is rejected. For example, young drivers (30 years old and younger) and middle-aged drivers were found to be temporally instable over time. Practical applications: The findings could help transportation authorities and safety professionals to enhance the safety of horizontal curves through appropriate and effective countermeasures.  相似文献   

11.
Objective: Previous studies on crash modeling at highway–rail grade crossings were aimed at exploring the factors that are likely to increase the crash frequencies at highway–rail grade crossings. In recent years, modeling driver's injury severity at highway–rail grade crossings has received interest. Because there were substantial differences among different weather conditions for driver's injury severity, this study attempts to explore the impact of weather influence on driver injury at highway–rail grade crossing.

Method: Utilizing the most recent 10 years (2002–2011) of highway–rail grade crossing accident data, this study applied a mixed logit model to explore the determinants of driver injury severity under different weather conditions at highway–rail grade crossing.

Results: Analysis results indicate that drivers' injury severity at highway–rail grade crossings is strongly different for different weather conditions. It was found that the factors significantly impacting driver injury severity at highway–rail grade crossings include motor vehicle speed, train speed, driver's age, gender, area type, lighting condition, highway pavement, traffic volume, and time of day.

Conclusions: The findings of this study indicate that crashes are more prevalent if vehicle drivers are driving at high speed or the oncoming trains are high speed. Hence, a reduction in speed limit during inclement weather conditions could be particularly effective in moderating injury severity, allowing more reaction time for last-minute maneuvering and braking in moments before impacts. In addition, inclement weather-related crashes were more likely to occur in open areas and highway–rail grade crossings without pavement and lighting. Paved highway–rail grade crossings with installation of lights could be particularly effective in moderating injury severity.  相似文献   


12.
IntroductionThe focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes.MethodRandom parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity.Results and conclusionsResults showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity.Practical applicationsThe research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions.  相似文献   

13.
Objective: The objective of this research was to study risk factors that significantly influence the severity of crashes for drivers both under and not under the influence of alcohol.

Methods: Ordinal logistic regression was applied to analyze a crash data set involving drivers under and not under the influence of alcohol in China from January 2011 to December 2014.

Results: Four risk factors were found to be significantly associated with the severity of driver injury, including crash partner and intersection type. Age group was found to be significantly associated with the severity of crashes involving drivers under the influence of alcohol. Crash partner, intersection type, lighting conditions, gender, and time of day were found to be significantly associated with severe driver injuries, the last of which was also significantly associated with severe crashes involving drivers not under the influence of alcohol.

Conclusions: This study found that pedestrian involvement decreases the odds of severe driver injury when a driver is under the influence of alcohol, with a relative risk of 0.05 compared to the vehicle-to-vehicle group. The odds of severe driver injury at T-intersections were higher than those for traveling along straight roads. Age was shown to be an important factor, with drivers 50–60 years of age having higher odds of being involved in severe crashes compared to 20- to 30-year-olds when the driver was under the influence of alcohol.

When the driver was not under the influence of alcohol, drivers suffered more severe injuries between midnight and early morning compared to early nighttime. The vehicle-to-motorcycle and vehicle-to-pedestrian groups experienced less severe driver injuries, and vehicle collisions with fixed objects exhibited higher odds of severe driver injury than did vehicle-to-vehicle impacts. The odds of severe driver injury at cross intersections were 0.29 compared to travel along straight roads. The odds of severe driver injury when street lighting was not available at night were 3.20 compared to daylight. The study indicated that female drivers are more likely to experience severe injury than male drivers when not under the influence of alcohol. Crashes between midnight and early morning exhibited higher odds of severe injury compared to those occurring at other times of day.

The identification of risk factors and a discussion on the odds ratio between levels of the impact of the driver injury and crash severity may benefit road safety stakeholders when developing initiatives to reduce the severity of crashes.  相似文献   


14.
IntroductionCycling injury and fatality rates are on the rise, yet there exists no comprehensive database for bicycle crash injury data.MethodWidely used for safety analysis, police crash report datasets are automobile-oriented and widely known to under-report bicycle crashes. This research is one attempt to address gaps in bicycle data in sources like police crash reports. A survey was developed and deployed to enhance the quality and quantity of available bicycle safety data in Virginia. The survey captures bicyclist attitudes and perceptions of safety as well as bicycle crash histories of respondents.ResultsThe results of this survey most notably show very high levels of under-reporting of bicycle crashes, with only 12% of the crashes recorded in this survey reported to police. Additionally, the results of this work show that lack of knowledge concerning bicycle laws is associated with lower levels of cycling confidence. Count model results predict that bicyclists who stop completely at traffic signals are 40% less likely to be involved in crashes compared to counterparts who sometimes stop at signals. In this dataset, suburban and urban roads with designated bike lanes had more favorable injury severity profiles, with lower percentages of severe and minor injury crashes compared to similar roads with a shared bike/automobile lane or no designated bike infrastructure.  相似文献   

15.
Introduction: Bicyclists are more vulnerable compared to other road users. Therefore, it is critical to investigate the contributing factors to bicyclist injury severity to help provide better biking environment and improve biking safety. According to the data provided by National Highway Traffic Safety Administration (NHTSA), a total of 8,028 bicyclists were killed in bicycle-vehicle crashes from 2007 to 2017. The number of fatal bicyclists had increased rapidly by approximately 11.70% during the past 10 years (NHTSA, 2019). Methods: This paper conducts a latent class clustering analysis based on the police reported bicycle-vehicle crash data collected from 2007 to 2014 in North Carolina to identify the heterogeneity inherent in the crash data. First, the most appropriate number of clusters is determined in which each cluster has been characterized by the distribution of the featured variables. Then, partial proportional odds models are developed for each cluster to further analyze the impacts on bicyclist injury severity for specific crash patterns. Results: Marginal effects are calculated and used to evaluate and interpret the effect of each significant explanatory variable. The model results reveal that variables could have different influence on the bicyclist injury severity between clusters, and that some variables only have significant impacts on particular clusters. Conclusions: The results clearly indicate that it is essential to conduct latent class clustering analysis to investigate the impact of explanatory variables on bicyclist injury severity considering unobserved or latent features. In addition, the latent class clustering is found to be able to provide more accurate and insightful information on the bicyclist injury severity analysis. Practical Applications: In order to improve biking safety, regulations need to be established to prevent drinking and lights need to be provided since alcohol and lighting condition are significant factors in severe injuries according to the modeling results.  相似文献   

16.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

17.
IntroductionDespite the numerous safety studies done on traffic barriers’ performance assessment, the effect of variables such as traffic barrier’s height has not been identified considering a comprehensive actual crash data analysis. This study seeks to identify the impact of geometric variables (i.e., height, post-spacing, sideslope ratio, and lateral offset) on median traffic barriers’ performance in crashes on interstate roads.MethodGeometric dimensions of over 110 miles median traffic barriers on interstate Wyoming roads were inventoried in a field survey between 2016 and 2018. Then, the traffic barrier data collected was combined with historical crash records, traffic volume data, road geometric characteristics, and weather condition data to provide a comprehensive dataset for the analysis. Finally, an ordered logit model with random-parameters was developed for the severity of traffic barrier crashes. Based on the results, traffic barrier’s height was found to impact crash severity.ResultsCrashes involving cable barriers with a height between 30″ and 42″ were less severe than other traffic barrier types, while concrete barriers with a height shorter than 32″ were more likely involved with severe injury crashes. As another important finding, the post-spacing of 6.1–6.3 ft. was identified as the least severe range in W-beam barriers.Practical applicationsThe results show that using flare barriers should reduce the number of crashes compared to parallel barriers.  相似文献   

18.
Introduction: This study investigates the impact of several risk factors (i.e., roadway, driver, vehicle, environmental, and barrier-specific characteristics) on the injury severity resulting from barrier-related crashes and also on barrier-hit outcomes (i.e., vehicle containment, vehicle redirection, and barrier penetration). A total of 1,685 barrier-related crashes, which occurred on three major interstate highways (I-65, I-85, and I-20) in the state of Alabama, were collected for a seven-year period (2010–2016), and all relevant information from the police reports was reviewed. Features that were rarely explored before (e.g., median width, barrier length, barrier offset or lateral position, left shoulder width, blockout type, and number of cables) were also collected and examined. Two types of longitudinal barriers were analyzed: high-tension cable barriers installed on medians and strong-post guardrails installed on medians and/or roadsides. Method: Two separate mixed logit (MXL) models were used to analyze crash injury severity in median and roadside barrier-related crashes. Two additional MXL models were separately adopted for median and roadside barrier-related crashes to estimate the probability of three barrier-hit outcomes (vehicle containment, vehicle redirection, and barrier penetration). Results: The results of crash injury severity MXL models showed that, for both median and roadside barrier crashes, barrier penetration, female drivers, and driver fatigue were associated with a higher probability of injury or fatal crashes. The results of barrier-hit MXL models showed that longer barrier length, Brifen cable barrier system, and barrier lateral position were significant predictors of median barrier-hit outcomes, whereas dark lighting condition, driving under the influence (DUI), presence of curved freeway sections, and right shoulder width significantly contributed to roadside barrier-hit outcomes. Conclusions: The MXL model succeeded in identifying several contributing factors of crash severity and barrier-hit outcomes along Alabama’s interstate highways. Practical applications: One study application is to design longer barrier run length (greater than 1230 feet or 0.2 miles) to reduce the barrier penetration likelihood.  相似文献   

19.
IntroductionRoadway departure (RwD) crashes, comprising run-off-road (ROR) and cross-median/centerline head-on collisions, are one of the most lethal crash types. According to the FHWA, between 2015 and 2017, an average of 52 percent of motor vehicle traffic fatalities occurred each year due to roadway departure crashes. An avoidance maneuver, inattention or fatigue, or traveling too fast with respect to weather or geometric road conditions are among the most common reasons a driver leaves the travel lane. Roadway and roadside geometric design features such as clear zones play a significant role in whether human error results in a crash. Method: In this paper, we used mixed-logit models to investigate the contributing factors on injury severity of single-vehicle ROR crashes. To that end, we obtained five years' (2010–2014) of crash data related to roadway departures (i.e., overturn and fixed-object crashes) from the Federal Highway Administration's Highway Safety Information System Database. Results: The results indicate that factors such as driver conditions (e.g., age), environmental conditions (e.g., weather conditions), roadway geometric design features (e.g., shoulder width), and vehicle conditions significantly contributed to the severity of ROR crashes. Conclusions: Our results provide valuable information for traffic design and management agencies to improve roadside design policies and implementing appropriately forgiving roadsides for errant vehicles. Practical applications: Our results show that increasing shoulder width and keeping fences at the road can reduce ROR crash severity significantly. Also, increasing road friction by innovative materials and raising awareness campaigns for careful driving at daylight can decrease the ROR crash severity.  相似文献   

20.
Two-lane, two-way roads constitute a major portion of the rural roads in most countries of the world. This study identifies the factors influencing crash injury severity on these roads in Iran. Classification and regression trees (CART), which is one of the most common methods of data mining, was employed to analyze the traffic crash data of the main two-lane, two-way rural roads of Iran over a 3-year period (2006–2008). In the analysis procedure, the problem of three-class prediction was decomposed into a set of binary prediction models, which resulted in a higher overall accuracy of the predictions of the model. In addition, the prediction accuracy of the fatality class, which was nearly 0% in some of the previous studies, increased significantly. The results indicated that improper overtaking and not using a seatbelt are the most important factors affecting the severity of injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号