首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbes play a central role in the decomposition and remineralization of organic matter and recycling of nutrients in aquatic environments. In this study, we examined the influence of physical, chemical, and biological parameters on the rate of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light intensity as photosynthetically active radiation, temperature, salinity, nutrients like NO3–N, SiO4–Si, and PO4–P, and chlorophyll a (Chl a) were measured along with BP, VP, and net primary production (NPP). NPP showed a strong positive correlation with light and Chl a (r 2?=?0.56 and 0.47, respectively), while VP showed a strong positive correlation with light, salinity, and Chl a (r 2?=?0.37, 0.58, and 0.37, respectively) and a negative correlation with BP (r 2?=??0.39) at P?≤?0.05. We observed a diurnal pattern in BP but did not have any significant correlation with light. Similar diurnal pattern was seen in VP, the peak of which was in succession with BP, suggesting that virus-mediated lysis plays an important role in loss processes of bacteria in Cochin estuary. The results of our study highlight the light-dependent and physicochemical-dependent diurnal variation in virioplankton production in a tropical estuarine ecosystem.  相似文献   

2.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   

3.
Changes in the phytoplankton biomass (chlorophyll a), production rate, and species composition were studied over two seasons using the time series measurements in the northern limb of the Cochin estuary in relation to the prevailing hydrological conditions. The present study showed the significant seasonal variation in water temperature (F = 69.4, P < 0.01), salinity (F = 341.93, P < 0.01), dissolved inorganic phosphorous (F = 17.71, P < 0.01), and silica (F = 898.1, P < 0.01) compared to nitrogen (F = 1.646, P > 0.05). The uneven input of ammonia (3.4–224.8 μM) from upstream (Periyar River) leads to the inconsistency in the N/P ratio (range 6.8–262). A distinct seasonality was observed in Si/N (F = 382.9, P < 0.01) and Si/P (F = 290.3, P < 0.01) ratios compared to the N/P ratio (F = 1.646, P > 0.05). The substantial increase in chlorophyll a (average, 34.8 ± 10 mg m???3) and primary production (average, 1,304 ± 694 mg C m???3 day???1) indicated the mesotrophic condition of the study area during the premonsoon (PRM) and it was attributed to the large increase in the population of nanoplankton (size < 20 μ ) such as Skeletonema costatum, Thalassiosira subtilis, Nitzschia closterium, and Navicula directa. In contrast, during the post monsoon (PM), low chlorophyll a concentration (average, 9.3 ± 9.2 mg m???3) and primary production (average, 124 ± 219 mg C m???3 day???1) showed heterotrophic condition. It can be stated that favorable environmental conditions (optimum nutrients and light intensity) prevailing during the PRM have enhanced the abundance of the nanoplankton community in the estuary, whereas during the PM, the light limitation due to high turbidity can reduce the nanoplankton growth and abundance, even though high nutrient level exists.  相似文献   

4.
Phytoplankton distribution and environmental characteristics were determined in a shallow, highly stratified and oligotrophic estuary (Zrmanja, eastern Adriatic). Samples were collected in two contrasting seasons; winter (February 2000), when river discharge was high, and in summer (July 2003), a period of drought. Phytoplankton distribution was closely related to salinity gradients, nutrient levels, and water residence time. Microscopic analysis revealed that phytoplankton was composed mainly of marine diatoms, dinoflagellates, cryptophytes, green flagellates, and coccolithophorids. The dominant biomarker pigments were fucoxanthin, alloxanthin and 19'-hexanoyloxyfucoxanthin, while lower, but indicative contributions of peridinin and chlorophyll b were also noted. Maximum abundance and biomass were found in the middle estuary in winter and in the upper estuary in summer. The estuary is mostly P-limited. Development of chain-forming marine diatoms was evident in winter. Due to the reduced nutrient input in summer, the biomass accumulated in the upper estuary (1,000 ng chlorophyll a l(-1)) was composed mostly of nanoplanktonic unicellular diatoms, nanoplanktonic marine dinoflagellates, cryptophytes, and chlorophytes. The concentrations of about 200 ng l(-1) hex-fuco, suggested that the contribution of prymnesiophytes to total biomass was comparable to that of diatoms and dinoflagellates. In the middle estuary and coastal sea, PO(4) and TIN were 3.5 times lower, resulting in a fivefold decrease in biomass (<100 ng chlorophyll a l(-1)). The oligotrophic Zrmanja and other karstic rivers discharging in the eastern Adriatic Sea, provide insufficient source of nutrients and low productivity of the eastern Adriatic Sea.  相似文献   

5.
The influence of anthropogenic loading on the distribution of soft bottom benthic organisms of a tropical estuary (Cochin backwaters) was examined. The industrial activities were found to be high in the northern and central part of the estuary, where dissolved inorganic nitrogen (DIN > 210 ??M) and phosphorus (DIP > 6.5 ??M) have caused high abundance of chlorophyll a (up to 73 mg m???3) and accumulation of organic carbon in sediments (up to 5%). Principal component analysis distinguished three zones in the estuary. The central zone (Z1) was characterized by organic enrichment, low species diversity, and increased number of pollution tolerant species. Long-term deterioration of the estuary is indicated by an increase in the nutrients and chlorophyll a levels by sixfold during the last few decades. Flow restrictions in the lower estuary have lead to a fourfold increase in sediment organic carbon over the period of three decades. The reduced benthic diversity followed by an invasion of opportunistic polychaetes (Capitella capitata), are indicative of a stress in the estuary.  相似文献   

6.
This study reports the results from the analyses of a 30-year (1974–2004) river water quality monitoring dataset for NO x –N (NO3–N?+?NO2–N), NH4–N, PO4–P and SiO2–Si at the tidal limit of the River Tamar (SW England), an agriculturally dominated and sparsely populated catchment. Annual mean concentrations of NH4–N, PO4–P and SiO2–Si were similar to other rural UK rivers, while annual mean concentrations of NO x –N were clearly lower. Estimated values for the 1940s were much lower than for those of post-1974, at least for NO3–N and PO4–P. Flow-weighted mean concentrations of PO4–P decreased by approximately 60 % between 1974 and 2004, although this change cannot be unequivocally ascribed to either PO4–P stripping from sewage treatment work effluents or reductions in phosphate fertiliser applications. Lower-resolution sampling (to once per month) in the late 1990s may also have led to the apparent decline; a similar trend was also seen for NH4–N. There were no temporal trends in the mean concentrations of NO x –N, emphasising the continuing difficulty in controlling diffuse pollution from agriculture. Concentrations of SiO2–Si and NO x –N were significantly and positively correlated with river flows ≤15 m3?s?1, showing that diffuse inputs from the catchment were important, particularly during the wet winter periods. In contrast, concentrations of PO4–P and NH4–N did not correlate across any flow window, despite the apparent importance of diffuse inputs for these constituents. This observation, coupled with the absence of a seasonal (monthly) cycle for these nutrients, indicates that, for PO4–P and NH4–N, there were no dominant sources and/or both undergo extensive within-catchment processing. Analyses of nutrient fluxes reveal net losses for NO3–N and SiO2–Si during the non-winter months; for NO3–N, this may be due to denitrification. Areal fluxes of NO x –N from the catchment were towards the higher end of the range for the UK, while NH4–N and PO4–P were closer to the lower end of the ranges for these nutrients. These data, taken together with information on sestonic chlorophyll a, suggest that water quality in the lower River Tamar is satisfactory with respect to nutrients. Analyses of these monitoring data, which were collected at considerable logistical and monetary cost, have revealed unique insights into the environmental behaviour of key nutrients within the Tamar catchment over a 30-year period.  相似文献   

7.
The purpose of this paper is to determine the concentrations of dissolved heavy metals namely mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) and to investigate the relationships between nutrients (nitrate-nitrogen and phosphate) and dissolved heavy metals. For this purpose, the concentrations of dissolved heavy metals were measured through 51 voyages form 1984 to 2006 in the Yangtze river estuary and its adjacent sea. Results analysis showed that dissolved heavy metals were not the main pollutants in the Yangtze river estuary, and the main source of heavy metal contamination was industrial wastewater from terrestrial pollution during the past 20 years. Heavy metal values showed significant abundance in the south branch of the Yangtze River estuary and Hangzhou Bay. In addition, Pb showed negative correlation with nutrients, while the positive correlations between Hg, Cd, and nutrients were shown. The obtained molar ratios, $\Delta \mbox{Cd}/\Delta \mbox{N} = 1.68 \times 10^{-5}$ and $\Delta \mbox{Cd}/\Delta \mbox{P} = 1.66 \times 10^{-4}$ , are close to those in plankton, showing the biogeochemical behavior and process of dissolved cadmium.  相似文献   

8.
Research on relationships between dissolved nutrients and land-use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-basins for 3 years to test for associations with land-use. Nutrient concentrations were analyzed for spatial and seasonal patterns and for relationships with land-use and stream discharge. Ortho-P and DN were higher in lower-elevation sub-basins dominated by poorly drained soils and agricultural production compared with higher-elevation sub-basins dominated by well-drained soils and forests. Eight lower basins had at least one sample period with nitrate-N?>?10 mg L?1. The Calapooia River had lower concentrations of dissolved nutrients compared with lower sub-basins, often by an order of magnitude. Dissolved organic N represented a greater proportion of DN in the upper forested sub-basins. Seasonal nutrient concentrations had strong positive correlations to the percent of a sub-basin that was managed for agriculture in all seasons (p?values?≤?0.019) except summer. Results suggest that agricultural lands are contributing to stream nutrient concentrations. However, poorly drained soils in agricultural areas may also contribute to the strong relationships that we found between dissolved nutrients and agriculture.  相似文献   

9.
The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l?1) and high bottom DO (>4 mg l?1), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l?1 in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l?1) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.  相似文献   

10.
Sydney estuary (Australia) catchment is substantially urbanised (80%) and small (480 km2) with a large population (2.5 million) and is therefore highly sensitive to anthropogenic influence. The Model for Urban Stormwater Improvement Conceptualisation used to model nutrient export to the estuary determined an average annual load of 475 t total nitrogen, 63.5 t total phosphorus and 343,000 t total suspended solids. Model verification included intense, short-term water sampling and analysis undertaken in the current project and use of published data spanning 10 years. Under high-rainfall conditions (>50 mm day???1), the estuary becomes stratified and nutrients are either removed from the estuary directly in a plume or indirectly by advective/dispersive remobilisation. The majority of the nutrient load is delivered during moderate rainfall (5–50 mm day???1) conditions and accumulates close to discharge points and remains in the estuary. To significantly reduce nutrient load, management strategies should aim to minimise low and moderate rainfall pollutant loads.  相似文献   

11.
Chemical and isotopic (??13C and ??15N) investigation of the Mandovi estuary along the Indian west coast affected strongly by the seasonal monsoon cycle was carried out. The Mandovi estuary is a major waterway for Goa and extensively used for transportation of iron and manganese ore. In addition, with large population centers as well as agricultural fields located on its shores, the estuary is assumed to have been influenced by human activities. Measurements of chemical and isotopic parameters made in the lower part of the estuary during the southwest (SW) monsoon and post-monsoon seasons reveal distinct changes, and it is observed that despite considerable enrichment of macronutrients during the SW monsoon, productivity of the estuary (phytoplankton biomass), as inferred from the chlorophyll-a content, is not as high as expected. This is due to occurrences of high turbidity and cloud cover that limits photosynthetic productivity. The isotopic characterization (C and N isotopes) of suspended organic matter produced/transported during the monsoon and post-monsoon seasons of year 2007 provides a baseline dataset for future isotopic studies in such type of tropical estuaries.  相似文献   

12.
River water quality was evaluated with respect to eutrophication and land use during spring snowmelt and summer base flow periods in Abashiri (mixed cropland-livestock farming) and Okoppe (grassland-based dairy cattle farming), eastern Hokkaido, Japan. Water from rivers and tributaries was sampled during snowmelt and summer base flow periods in 2005, and river flow was measured. Total N (TN), NO3–N, and Si concentrations were determined using standard methods. Total catchment and upland areas for each sampling site were determined with ArcGIS hydrology modeling software and 1:25,000-scale digital topographic maps. Specific discharge was significantly higher during snowmelt than during base flow. In both areas, TN concentrations increased, whereas Si concentrations decreased, with increased specific discharge, and were significantly higher during snowmelt. The Si:TN mole ratio decreased to below or close to the threshold value for eutrophication (2.7) in one-third of sites during snowmelt. River NO3–N concentrations during base flow were significantly and positively correlated with the proportion of upland fields in the catchment in both the Abashiri (r = 0.88, P < 0.001) and Okoppe (r = 0.43, P < 0.01) areas. However, the regression slope, defined as the impact factor (IF) of water quality, was much higher in Abashiri (0.025) than in Okoppe (0.0094). The correlations were also significantly positive during snowmelt in both areas, but IF was four to eight times higher during snowmelt than during base flow. Higher discharge of N from upland fields and grasslands during snowmelt and the resulting eutrophication in estuaries suggest that nutrient discharge during snowmelt should be taken into account when assessing and monitoring the annual loss of nutrients from agricultural fields.  相似文献   

13.
Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by ≤ 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L−1 in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L−1, DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

14.
Sediments from the Tagus estuary (Portugal) were collected at 40 stations in July and December 2004. Total LAS concentrations ranged between 0.03 and 17.76 mg LAS.kg(-1) dry weight in July, and between 0.09 and 9.57 mg LAS.kg(-1) in December. Highest LAS concentrations were found at the upper northern part of the estuary, coincident with the localisation of an important waste water treatment station. According to the Predicted No Effect Concentration (PNEC) of 8.1 mg.kg(-1) derived for this compound, Environmental Risk Assessment (ERA) identified a hazard for the ecosystem at the station with the highest LAS concentration, and similar results are obtained by Equilibrium Partitioning Method (EPM). Nevertheless, LAS concentrations decreased significantly between samplings in the stations with the highest LAS concentrations in July, whereas increased LAS concentrations at adjacent stations were found in December. In the remaining stations, LAS concentrations were up to three orders of magnitude lower, representing no hazard for the sediment community.  相似文献   

15.
Sequential chemical extraction using chelating agents were used to study the P dynamics and its bioavailability along the surface sediments of the Cochin estuary (southwest coast of India). Sediments were analyzed for major P species (iron bound P, calcium bound P, acid soluble organic P, alkali soluble organic P and residual organic P), Fe, Ca, total carbon, organic carbon, total nitrogen and total sulfur contents. An abrupt increase in the concentration of dissolved inorganic P with increasing salinity was observed in the study region. Iron-bound P exhibited a distinct seasonal pattern with maximum values in the monsoon season when fresh water condition was prevailed in the estuary. As salinity increased, the percentage of iron-bound P decreased, while that of calcium-bound P and total sedimentary sulfur increased. C/P and N/P ratios were low which indicate that large amounts of organic matter enriched with P tend to accumulate in surface sediments. The high organic P contribution in the sedimentary P pool may indicate high organic matter load with incomplete mineralization, as well as comparatively greater percentage of humic substance and resistant organic compounds. Principal component analysis is employed to find the possible processes influencing the speciation of P in the study region and indicate the following processes: (1) the spatial and seasonal variations of calcium bound P and acid soluble organic P was mainly controlled by sediment texture and organic carbon content, (2) sediment redox conditions control the distribution of iron bound P and (3) the terrigenous input of organic P is a significant processes controlling total P content in surface sediments. The bioavailable P was very high in the surface sediments which on an average accounts for 59 % in the pre-monsoon, 65 % in the monsoon and 53 % in the post-monsoon seasons. The surface sediments act as a potential internal source of P in the Cochin estuary.  相似文献   

16.
Changes in the autotrophic pico- (0.2–2 μm), nano- (2–20 μm), and microplankton (>20 μm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m???3 and 432 mgC m???3 day???1) as compared to the coastal waters (5.3 mg m???3 and 224 mgC m???3 day???1). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 ± SD 8.3% and 81.2 ± SD 3.2%) and the coastal waters (average 73.2 ± SD 17.2% and 81.9 ± 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 ± SD 3.9 mgC mgChl a m???3 h???1), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 ± 7 mgC mgChl a m???3 h???1). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.  相似文献   

17.
The present work includes part of the first studies of metals concentrations in the zooplankton from a heavily industrialized estuary of Argentina, the Bahía Blanca estuary. Cd, Cu, and Pb concentrations in the zooplankton (macro- and mesozooplankton) and the suspended particulate matter were measured at stations with different degree of pollution. Physicochemical variables and zooplankton composition and abundance were also analyzed. Thus, the aim of the present work was to analyze the spatial and temporal distribution of heavy metals in these two different fractions, and the possible relation among them due to their importance in the biogeochemical cycles of marine environments. Samplings were carried out during a year, from March 2005 to April 2006, every 2 months, at stations located near chemical and petrochemical industries, stations far from these points and one station in an intermediate location. In the mesozooplankton, the mean concentrations of Cd, Cu, and Pb were 3.63?±?1.46, 34.46?±?5.40, and 11.54?±?3.04 μg?g?1 dry weight (d.w.) respectively, while in the macrozooplankton, 3.20?±?2.28, 21.86?±?4.79, and 8.36?±?1.85 μg?g?1 d.w. On the other hand, particulate Cd, Cu, and Pb presented a mean concentration of 3.33?±?1.22, 12.75?±?2.67, and 12.53?±?3.20 μg?g?1 d.w., respectively. Metals’ levels in both the SPM and zooplankton fluctuated throughout the study time and were relatively high in the particulate phase especially for Cu and Pb. Moreover, zooplankton accumulated important concentrations of the three metals. The sources of them are probably the discharges of the industries and domestic sewages located near the estuary.  相似文献   

18.
Alkalisation of soil has been assumed to be the principal cause of changes in vertical gradients of nutrients in Pinus sylvestris crown. The long-term influence of alkaline dust pollution ( ${\rm {pH}}_{{\rm H}_{2}{\rm O}}$  12.3–12.6) emitted from a cement plant on the element composition of soil and needles of Scots pine in different canopy layers was studied. In the polluted area, the pH of soils was >7, and high amounts of Ca, K and Mg were measured in the upper layers of soil (0–30 cm), while the mobility and solubility of some contaminants have decreased, nutrition processes have become complicated, and imbalance of mineral composition of trees was revealed. Reduced N and increased K, Ca and Mg concentrations in needles were observed in the heavily polluted area. Vertical gradients of elements and their ratios in canopies varied depending on the alkalisation level of soil. Needles on the upper-crown shoots had higher concentrations of N, C, Ca and Mg and lower concentrations of P and K compared to the lower layer of the crown. In the unpolluted area, higher concentrations of N, P, K and Ca were found in lower-crown needles and of C and Mg in needles at the top of the canopy. The P/N ratio below 0.125 indicated P deficiency in pines. The ratios N/Ca, N/Mg and N/K had significantly decreased, while the ratios Ca/Mg, K/Mg and K/Ca had a tendency to increase in heavily polluted sample plots. Magnitude of changes of element ratios indicates on the disbalances of availability and translocation of nutrients in the crown of trees.  相似文献   

19.
Intra-tidal variability in the transport of materials through the Cochin estuary was studied over successive spring and neap tides to estimate the export fluxes of nutrients and chlorophyll a into the adjoining coastal zone. The results showed that there was a substantial increase in the freshwater flow into the estuary following heavy rains (~126 mm) prior to the spring tide observations. The estuary responded accordingly with a relatively larger export through the Cochin inlet during spring tide over neap tide. Despite an increased freshwater discharge during spring tide, the export fluxes of phosphate and ammonia were high during neap tide due to their input into the estuary through anthropogenic activities. The significance of this study is that the export fluxes from the Cochin estuary could be a major factor sustaining the spectacular monsoon fishery along the southwest coast of India.  相似文献   

20.
Water and sediment quality was monitored at four sites of Óbidos coastal lagoon (Portugal) in February, May, July and October 2006, covering different hydrological conditions. Concentrations of nutrients and metals increased in autumn/winter, particularly in an inner branch with symptoms of eutrophication that receives a small tributary contaminated by agro-industrial activities. Moreover, concentrations of PO4 3?, Si(OH)4 and Mn (diffusive gradients of thin films (DGT)-measured) varied inversely with salinity. Additionally, that branch was monitored over 26-h in July 2006 to assess variations of water quality parameters, nutrients and metals on short timescale. During the night, O2 in water reached a minimum of 40% saturation followed by a pronounced increase of DGT-measured metals and nutrients in water column: Fe and Mn (ten times); Cr, Co, PO4 3? and Si(OH)4 (six times). Enhancements were also registered for metal/Al ratios in suspended particulate matter: Mn, Cr and Cd (four to six times); Fe, Ni and Co (1.5 times). The metal distribution coefficients calculated along the 26-h survey showed a maximum at daylight suggesting a preferential association of metals with suspended particles. Data recorded under different hydrological conditions and over the 26-h survey allowed to address the influence of external and internal sources on water quality. The results of this study highlight the importance of day/night cycles on the availability of nutrients and metals in eutrophic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号