首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Microtox and Ames bioassays were employed to assess acute toxicity and mutagenicity of water soluble components of class–fractionated oils extracted from one creosote–and four petroleum–contaminated soils. Microtox results revealed that potential acute toxicity resides mainly in the polar class fractions at three sites and indicated potential synergistic and antagonistic effects between compounds in the total extracts at two sites. Ames Salmonella/microsome testing indicated that the polyaromatic fractions at two sites exhibit weak mutagenicity with enzymatic activation, while the polar fractions at two sites are weakly mutagenic without enzyme activation. Further chemical characterization of the polar and polyaromatic fractions is required to fully assess the potential of health and ecological risks at the creosote–and petroleum–contaminated sites exhibiting these toxic responses.  相似文献   

2.
Size-segregated atmospheric particles were collected in Rome, Italy, using a low-pressure impactor.Twelve sampling campaigns were conducted under different meteorological conditions over a whole year covering 155 not consecutive days. The samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) and their nitro- and methyl- derivatives known for their toxicity. An assessment of the carcinogenic potency of the particles known to penetrate into lungs, liver, heart and nervous system was performed.The distribution of the classes of compounds was unimodal and centrated at 0.4 μm size fraction for PAHs and bimodal and centrated at 0.1 and 0.4 μm for methyl- and nitro- derivatives. The 18% of toxic organic compounds we analyzed was distributed into the ultrafine fraction (PM0.1) and 76% in the fine fraction; but substituted PAH distribution in the ultrafine particles shifted toward higher values during warm periods. In July, the 50% of the total nitro-PAHs was found in PM0.1 and an average of 42% of the total methyl-PAHs was found in the same fraction in summer and intermediate seasons.An evaluation of the potential toxicity of the measured compounds was tentatively assessed based on Potency Equivalency Factors (PEF).  相似文献   

3.
A fine particulate matter (PM2.5) sampling program was conducted in Missoula, MT, to investigate both the particle and vapor phases of PM2.5-associated polycyclic aromatic hydrocarbons (PAHs) found in a northern Rocky Mountain urban airshed. Twenty-four-hour samples were collected during the cold winter months of January through April 2002, when many of the more volatile organic components of PM2.5 were expected to be found in the condensed particle form. To meet analytical detection limits, each of the 12 individual sample days were aggregated into four total filter and polyurethane foam (PUF) samples, respectively, with each aggregate containing 3 sample days. Quartz filter (particle-phase PAHs) and PUF (vapor-phase PAHs) aggregates were analyzed separately for 18 individual PAHs and phenolics by gas chromatography/mass spectrometry. Results showed that 87% of the PM2.5-associated phenolics and PAHs measured in this study were found in the vapor phase. PM2.5-associated gas/particle partition coefficients (Kp,2.5) ranged from 0 for the lighter phenolics and PAHs to approximately 0.1 for some of the heavier PAHs, such as fluoranthene and pyrene. Calculating Kp,2.5 for the heaviest measured PAHs was not feasible because of low or undetectable concentrations in the vapor phases of these compounds. Phenolics and two-ringed and three-ringed PAHs were found almost exclusively in the vapor phase. Four-ringed PAHs were distributed between the particle and vapor phases, with more mass measured in the vapor phase. Very little five-ringed and higher PAHs were measured from either the filter or PUF sampling medium. These results provide information on both the concentrations and different phases of PM2.5-associated PAHs measured during the winter months in a northern Rocky Mountain urban airshed, when concentrations of PM2.5 are generally at their highest compared with the rest of the year.  相似文献   

4.
Organic pollutants (e.g. polyaromatic hydrocarbons (PAH)) strongly sorb to carbonaceous sorbents such as black carbon and activated carbon (BC and AC, respectively). For a creosote-contaminated soil (Sigma15PAH 5500 mg kg(dry weight(dw))(-1)) and an urban soil with moderate PAH content (Sigma15PAH 38 mg kg(dw)(-1)), total organic carbon-water distribution coefficients (K(TOC)) were up to a factor of 100 above values for amorphous (humic) organic carbon obtained by a frequently used Linear-Free-Energy Relationship. This increase could be explained by inclusion of BC (urban soil) or oil (creosote-contaminated soil) into the sorption model. AC is a manufactured sorbent for organic pollutants with similar strong sorption properties as the combustion by-product BC. AC has the potential to be used for in situ remediation of contaminated soils and sediments. The addition of small amounts of powdered AC (2%) to the moderately contaminated urban soil reduced the freely dissolved aqueous concentration of native PAH in soil/water suspensions up to 99%. For granulated AC amended to the urban soil, the reduction in freely dissolved concentrations was not as strong (median 64%), especially for the heavier PAH. This is probably due to blockage of the pore system of granulated AC resulting in AC deactivation by soil components. For powdered and granulated AC amended to the heavily contaminated creosote soil, median reductions were 63% and 4%, respectively, probably due to saturation of AC sorption sites by the high PAH concentrations and/or blockage of sorption sites and pores by oil.  相似文献   

5.
This paper presents the results of the organic matter characterization of sludge from two ponds (retention and infiltration) located in France. Special focus was placed on studying hydrocarbons and PAHs. This investigation is part of a global project on road and urban sludge with the aim of identifying a better means for managing these materials. Gas chromatographic and GC/MS analyses indicate that the main component of the organic fraction stems from petroleum-derived products like diesel fuel and motor oil. This finding was confirmed by the presence of biomarkers from the hopane series, as well as by pyrolytic and alkylated PAHs. Results from this study clearly show that the contaminants are mainly generated from anthropogenic petroleum sources. Due to their levels of hydrocarbon contamination, these sludge deposits must be considered as waste and cannot therefore be disposed anywhere, especially within the current context of sustainable development.  相似文献   

6.
The (geno)toxicity of sediment dichloromethane extracts and fractions obtained by size exclusion chromatography were evaluated to investigate effects based on size fractionation. In this study, three sediments were selected according to their incremental contamination in PAHs and in PCBs: Hamilton harbour, Toronto bay and lake St. Clair sediments. Heavy metals, total sulfur and elemental sulfur (S8) were also determined in the (un)fractionated sediment extracts. The liver cells were exposed to concentrations of sediment extracts and fractionated samples for 24 h at 15 degrees C, afterwhich cell viability, cytochrome P4501A1 activity, available free Zn, DNA damage and oxidative stress were determined. The results showed that the sediment extracts contained high levels of sulfur most of which was found in the low molecular weight (LMW) region, i.e., the 2000-50 atomic mass unit (amu) fraction. Elemental sulfur (S8) accounted for 14-41% of extractable sulfur and were found to elute in the post-column volume (PCV) fraction despite its molecular weight of 256 amu. Heavy metals were found mainly in the HMW (i.e. the > 2000 amu) fraction and LMW fractions and very few or none were observed in the PCV fractions. In sediment extracts, sublethal effects were present principally by the HMW and LMW fractions suggesting that some chemicals were also associated with high molecular weight compounds of extractable organic matter. Less toxicity or effect was sometimes found in the extract indicating an antagonistic effect of the contaminants. We found that cell viability and genotoxicity evaluations could be performed on the unfractionated extracts while EROD, available Zn and oxidative stress measurements should be performed on the LMW fractions because of possible antagonist or shielding effects. Considering the cytotoxic responses, the best toxicity ranking in respect to contaminant levels in sediment extract was obtained with the LMW and PCV fractions which accounted for most of the toxic responses in the chromatographic fractions. Moreover, the shielding effect could be explained, in part, by the association of LMW contaminants to large macromolecules.  相似文献   

7.
Abstract

A fine particulate matter (PM2.5) sampling program was conducted in Missoula, MT, to investigate both the particle and vapor phases of PM2.5-associated polycyclic aromatic hydrocarbons (PAHs) found in a northern Rocky Mountain urban airshed. Twenty-four-hour samples were collected during the cold winter months of January through April 2002, when many of the more volatile organic components of PM2.5 were expected to be found in the condensed particle form. To meet analytical detection limits, each of the 12 individual sample days were aggregated into four total filter and polyurethane foam (PUF) samples, respectively, with each aggregate containing 3 sample days. Quartz filter (particle-phase PAHs) and PUF (vapor-phase PAHs) aggregates were analyzed separately for 18 individual PAHs and phenolics by gas chromatography/mass spectrometry. Results showed that 87% of the PM2.5-associated phenolics and PAHs measured in this study were found in the vapor phase. PM2.5-associated gas/particle partition coefficients (Kp,2.5) ranged from 0 for the lighter phenolics and PAHs to ~0.1 for some of the heavier PAHs, such as fluoranthene and pyrene. Calculating Kp,2.5 for the heaviest measured PAHs was not feasible because of low or undetectable concentrations in the vapor phases of these compounds. Phenolics and two-ringed and three-ringed PAHs were found almost exclusively in the vapor phase. Four-ringed PAHs were distributed between the particle and vapor phases, with more mass measured in the vapor phase. Very little five-ringed and higher PAHs were measured from either the filter or PUF sampling medium. These results provide information on both the concentrations and different phases of PM2.5-associated PAHs measured during the winter months in a northern Rocky Mountain urban airshed, when concentrations of PM2.5 are generally at their highest compared with the rest of the year.  相似文献   

8.
A two-step analytical method is developed for the isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) in crude oil contaminated soil. In the first step, those crude oil components were isolated which are easily mobilized with water from the contaminated soil (determination of groundwater pollution potential). In the second step, the fraction containing the remaining crude oil compounds was extracted using toluene. After the cleanup of the fractions, both fractions were analyzed using high-performance liquid chromatography (HPLC). The HPLC of the toluene extracted fraction shows that along with the sixteen priority pollutants from the US-EPA list, many other polycyclic aromatic hydrocarbons (PAHs) are present as well. It is evident from the chromatograms that a significant amount of PAHs are present as is also the case in the fractions eluted by water. The described method allows the determination of total organic pollutants from crude oil, some of them being potential groundwater contaminants. The major part of the total pollutants could not be mobilized by water and therefore remains in the soil, which was extracted in the second step.  相似文献   

9.
Ou S  Zheng J  Zheng J  Richardson BJ  Lam PK 《Chemosphere》2004,56(2):107-112
Surficial sediments were sampled from nine stations in Xiamen Harbour and two stations in Yuan Dan Lake during April 2002. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Selected ion monitoring was at M/Z=57 for petroleum hydrocarbons (PHCs) and individual M/Zs for each of the 15 typical polycyclic aromatic hydrocarbons (PAHs) and nine alkylated PAHs. The results showed that concentrations of PHCs and total PAHs in the sediments of Yuan Dan Lake were 1397 microg g(-1) (dry weight, dw) and 1377 ng g(-1) (dw), respectively. The ranges for PHCs and total PAHs in the sediments from Xiamen Harbour were 133-943 microg g(-1) (dw) and 98-309 ng g(-1) (dw), respectively. Shipping activities, industrial wastewater discharges, fuel oil spillage from ships and vehicles were the main sources of PHCs and PAHs in the Harbour. In addition, the widespread use of coal for industrial processes and domestic consumption accounted for the second largest source of PAHs in the sediments, while atmospheric transport and deposition of PAHs are also important.  相似文献   

10.
Formation of bound residues of pollutants in soils and sediments is an important process to control the fate of pollutants in the environment. The most of bound residue is not solvent extractable. In this paper, we measured both extractable and non-extractable polycyclic aromatic hydrocarbons (PAHs) in different organic matter fractions of samples from the Pearl River Delta, China. Non-extractable PAHs concentration was 234.45-1424.57 μg/kg and accounted for 33.78-57.44% of total PAHs. 2-3 Ring PAHs were the dominant species and differed in concentration substantially between the samples. The atomic ratio of PAHs over organic-C in the fractions ordered as solvent soluble organic matter > humin > humic acids, matching the content of aliphatic moieties in the fractions of organic matter. The ratio of extractable and non-extractable PAHs may relate to the aging process of PAHs in soil and sediment.  相似文献   

11.
Headspace solid phase microextraction (HS-SPME) has been used together with GC-MS to analyze organic substances directly in a soil, heavily contaminated with PAHs/creosote (approximately 300 mg/kg soil), from an old gaswork site in Stockholm, Sweden. The HS-SPME results, both qualitative and quantitative, were compared with traditional liquid extraction using ethyl acetate/hexane (20:80). It was shown that the concentrations determined with HS-SPME at 60 degrees C correlated well, for compounds containing up to two and three aromatic rings (naphthalenes, acenaphthene, acenaphthylene and fluorenes, while a lower concentration was obtained for phenanthrene, anthracene, fluoranthene and pyrene. The total concentrations for each compound determined with HS-SPME ranged from 2 to 25 microg/g soil. Quantification was done using standard addition of compounds directly to the soil samples. The bioavailable fraction of the compounds in the contaminated soil at 20 degrees C was analyzed using external calibration by spiking sterile uncontaminated sand (same texture and particle size as the contaminated soil but without a heavily sorbed organic fraction) with hydrocarbon standards in different concentrations. Storage of exposed fibers at 20 degrees C showed that analysis should be done within two days to make qualitative measurements and earlier (as soon as possible) for quantitative determinations.  相似文献   

12.
The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethylphenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern. The significant contribution of vehicular emissions was identified by CPI values (approximately 1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.  相似文献   

13.
ABSTRACT

The organic fraction of aerosol emitted from a vegetable oil processing plant was studied to investigate the contribution of emissions to ambient particles in the surrounding area. Solvent-soluble particulate organic compounds emitted from the plant accounted for 10% of total suspended particles. This percentage was lower in the receptor sites (less than 6% of total aerosol mass). Nonpolar, moderate polar, polar, and acidic compounds were detected in both emitted and ambient aerosol samples. The processing and combustion of olive pits yielded a source with strong biogenic characteristics, such as the high values of the carbon preference index (CPI) for all compound classes. Polycyclic aromatic hydrocarbons (PAHs) detected in emissions were associated with both olive pits and diesel combustion. The chromatographic profile of dimethyl-phenanthrenes (DMPs) was characteristic of olive pit combustion. Organic aerosols collected in two receptor sites provided a different pattern.

The significant contribution of vehicular emissions was identified by CPI values (~1) of n-alkanes and the presence of the unresolved complex mixture (UCM). In addition, PAH concentration diagnostic ratios indicated that emissions from catalyst and noncatalyst automobiles and heavy trucks were significant. The strong even-to-odd predominance of n-alkanols, n-alkanoic acids, and their salts indicated the contribution of a source with biogenic characteristics. However, the profile of DMPs at receptor sites was similar to that observed for diesel particulates. These differences indicated that the contribution of vegetable oil processing emissions to the atmosphere was negligible.  相似文献   

14.
Leachate from the North Bay municipal landfill has contaminated an unconfined, sandy aquifer throughout the 700 m flow system from the site to a discharge zone at a creek. The major organic contaminants identified are aromatic hydrocarbons, especially substituted benzenes. The high groundwater velocity of about 75 m yr−1 and the low organic sorption properties of the sand have permitted non-transformed contaminants to spread throughout the total flow system. There is considerable temporal and spatial variability in groundwater chemistry.Most of the aqueous organic carbon has a nominal molecular weight of <2000 and the general decrease in the mass of this fraction relative to Cl indicates it is being mineralized significantly during transport. IR spectra indicate a general trend of increased aromaticity and decreased OH content of organic matter along the flow system. The aqueous organic matter has a significant apparent complexing capacity and so it is somewhat surprising that toxic metal concentrations in leachate-impacted groundwaters are low. In the leachate plume, this complexing capacity is taken up by major cations and H+ and to a far lesser extent by toxic metals such as Pb, Cd or Zn.Dispersion is clearly responsible for considerable decrease in contaminant concentration along the flow system. Biotransformation under strictly anaerobic conditions has probably caused 1,1,1-trichloroethane and trichloroethylene to be restricted to the immediate vicinity of the landfill. A simple method of comparing the concentrations of pairs of organics at points along the flow system provides relative transformation rates for pairs of organics even with variable inputs from the landfill and dispersive dilution. Relative to ethylbenzene, o-xylene is rapidly lost from this system. O-xylene may be less persistent than m- or p-xylene; a result unexpected from previous studies of these dimethylbenzenes. In the initial, strictly anarobic segment of the flow system 1,2,4-trimethylbenzene and 1,4-dichlorobenzene are equally persistent, but in the final, less anaerobic segment, the former appears to be degraded more rapidly than the latter.Contaminant distributions in aquifers reflect the results of a number of processes integrated in a complex manner and so are difficult to interpret in terms of specific processes. However, they do provide evidence for what processes are most significant in real groundwater systems and they will also provide critical tests of how well laboratory-derived information relates to real groundwater contamination situations.  相似文献   

15.
Phenol, cresols, dimethylphenols and resorcinols are considered major pollutants in the oil-shale semi-coke dump leachates (up to 380 mg phenols/L) that contaminate the surrounding soils and pose a threat to the groundwater in the North-East of Estonia. However, despite high residual concentrations of polyaromatic hydrocarbons (PAHs) and oil products in these soils, the concentration of phenols (especially their water-extractable fraction) was low, not exceeding 0.7 mg/kg dwt. The aim of the current study was to evaluate the role of biodegradation and aging on the decrease of hazard caused by phenolic pollution. The extractability of phenols (phenol, cresols, dimethylphenols and resorcinols) and their biodegradability by the microbial population was studied in the 13 soils sampled from the Estonian oil-shale region, territories of former gas stations, and from presumably non-polluted areas. Phenol, 5-methylresorcinol, p-cresol and resorcinol could be considered easily degradable in the soils as the microbial populations from majority of the soils studied were able to grow on mineral medium supplemented with these phenols as a single source of carbon. 2,3- and 2,4- and 3,4-dimethylphenols could be considered less easily biodegradable.The semi-coke dump leachate polluted soil (containing no dibasic phenols, 43 mg of monobasic phenols, 1348 mg of oil products and 35 mg of PAHs per g dwt) was analyzed chemically (HPLC) and toxicologically (Flash-Assay usingVibrio fischeri) for the leaching of phenols during shaking of soil-water slurries for 24 h. Only 5.8% of the total concentration of phenols was water-extractable, whereas about 50% of the leached amount was biodegraded by the soil microorganisms. Phenol and cresols were biodegraded by 80%, but the concentration of dimethyl-phenols practically did not change. The pollutants (measured as total water-extractable toxicity) were desorbed from the soil particles by the 8th h of extraction, whereas the toxicity of the aqueous phase continued to increase, probably due to the formation of toxic metabolites. The concentration of water-extractable phenols was too low to explain the toxicity of the extract. Also the impact of PAHs and oil products was excluded. Thus, the relatively low concentration of phenols in the oil-shale region soils is most probably the reflection of both natural attenuation and pollution aging. Therefore, the impact of phenolic compounds to the net bioavailable hazard is probably not so remarkable as it has been considered. The actual pollutants causing the toxicity of the soils from the oil-shale region, however, need to be elucidated.  相似文献   

16.
The initial chicken manure and the three fractions derived from it by fast pyrolysis, that is, the two biooils Fractions I and II as well as the residual char were analyzed by Curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). The individual compounds identified were grouped into the following six compound classes: (a) N-heterocyclics; (b) substituted furans; (c) phenol and substituted phenols; (d) benzene and substituted benzenes; (e) carbocyclics; and (f) aliphatics. Of special interest were the relatively high concentrations of N-heterocyclics in biooil Fraction II which was obtained in the highest yield and had the highest calorific value. Prominent N-heterocyclics in biooil Fraction II were methyl-and ethyl-substituted pyrroles, pyridines, pyrimidine, pyrazines, and pteridine. Also noteworthy was the high abundance of aliphatics in biooil Fraction I and the char. The alkanes and alkenes in biooil Fraction I ranged from n-C7 to n-C18 and C7:1 to C18:1, respectively, and those in the char from n-C7 to n-C19 and C7:1 to C19:1, respectively. The N-heterocyclics in the two biooil Fractions came from the chicken manure, from proteinaceous materials during fast pyrolysis or were formed during the fast pyrolysis manure conversion by the Maillard reaction which involved the formation of N-heterocyclics by amino acids interacting with sugars.  相似文献   

17.
Sorbent materials consisting of organoclay immobilized onto the surface of a solid support were evaluated for use in pentachlorophenol (PCP) and polycyclic aromatic hydrocarbon (PAH) remediation of groundwater at a creosote-contaminated Superfund site. Cetylpyridinium-exchanged low pH montmorillonite clay (CP-LPHM) was bonded to either sand (CP-LPHM/sand) or granular activated carbon (GAC) (CP-LPHM/GAC) using the free acid form of carboxymethylcellulose as an adhesive. Effluent from an oil-water separator was eluted through equal bed volumes of composite (4 g 3:2 CP-LPHM/GAC or 13 g CP-LPHM/sand), affinity-extracted, and quantitatively analyzed by GC/MS. PCP, naphthalene, fluorene, phenanthrene, pyrene, and total PAHs were initially reduced by both CP-LPHM/GAC (> or =99%, 61%, 99%, > or =99%, 97%, and 94%, respectively) and CP-LPHM/sand (90%, 70%, 94%, 95%, 93%, and 86%, respectively). Complete breakthrough of naphthalene occurred after approximately 15 h of elution through 3:2 CP-LPHM/GAC and 22 h through CP-LPHM/sand. PCP showed complete breakthrough following 18 h of elution through 3:2 CP-LPHM/GAC and 26 h through CP-LPHM/sand. However, 50% breakthrough was not attained for higher molecular weight PAHs, as fluoranthene, pyrene, benzo[a]anthracene, and chrysene continued to be greatly reduced with both 3:2 CP-LPHM/GAC (98%, 95%, 94%, and 95%, respectively) and CP-LPHM/sand (75%, 73%, 76%, and 78%, respectively) after 48 h of continuous elution. Results confirm prior studies, indicating that these organoclay-containing composites have a high capacity for contaminants found in wood preserving waste. Further, results suggest that the inclusion of CP-LPHM may be useful as part of an effective strategy for groundwater remediation of high concentrations of PCP and PAHs, in particular high molecular weight and carcinogenic PAHs.  相似文献   

18.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

19.
自然水体中主要有毒有机物的研究进展   总被引:3,自引:1,他引:2  
介绍了主要有毒有机物多环芳烃(PAHs)、多氯联苯(PCBs)、有机氯农药(OCPs)在环境中的危害及其来源,着重评述了近年来中国自然水体中和沉积物中该类污染物的研究进展,指出新的检测技术的开发、有毒有机物的生殖毒性和生态环境风险影响方法学的研究及污染区域污染控制、消减及修复是今后该领域的工作重点.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号