首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The alarming current and predicted species extinction rates have galvanized conservationists in their efforts to avoid future biodiversity losses, but for species extinct in the wild, few options exist. We posed the questions, can these species be restored, and, if so, what role can ex situ plant collections (i.e., botanic gardens, germplasm banks, herbaria) play in the recovery of plant genetic diversity? We reviewed the relevant literature to assess the feasibility of recovering lost plant genetic diversity with using ex situ material and the probability of survival of subsequent translocations. Thirteen attempts to recover species extinct in the wild were found, most of which used material preserved in botanic gardens (12) and seed banks (2). One case of a locally extirpated population was recovered from herbarium material. Eight (60%) of these cases were successful or partially successful translocations of the focal species or population; the other 5 failed or it was too early to determine the outcome. Limiting factors of the use of ex situ source material for the restoration of plant genetic diversity in the wild include the scarcity of source material, low viability and reduced longevity of the material, low genetic variation, lack of evolution (especially for material stored in germplasm banks and herbaria), and socioeconomic factors. However, modern collecting practices present opportunities for plant conservation, such as improved collecting protocols and improved cultivation and storage conditions. Our findings suggest that all types of ex situ collections may contribute effectively to plant species conservation if their use is informed by a thorough understanding of the aforementioned problems. We conclude that the recovery of plant species currently classified as extinct in the wild is not 100% successful, and the possibility of successful reintroduction should not be used to justify insufficient in situ conservation.  相似文献   

2.
A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non‐native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non‐native species; the relative composition of threatened, ornamental, or invasive non‐native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non‐native plants occurred in one or more living collections (99%), less than one‐quarter of red‐listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non‐native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non‐native species (20) as red‐listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non‐native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10‐fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future invasion risks.  相似文献   

3.
Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species). Viability of living collections, and their value for future conservation efforts, can be limited without coordinated efforts to track and manage individuals across institutions. Using a pedigree-focused approach, the zoological community has established an inter-institutional infrastructure to support long-term viability of captive animal populations. We assessed the ability of this coordinated metacollection infrastructure to support the conservation of 4 plant species curated in living collections at multiple botanic gardens around the world. Limitations in current practices include the inability to compile, share, and analyze plant collections data at the individual level, as well as difficulty in tracking original provenance of ex situ material. The coordinated metacollection framework used by zoos can be adopted by the botanical community to improve conservation outcomes by minimizing the loss of genetic diversity in collections. We suggest actions to improve ex situ conservation of exceptional plant species, including developing a central database to aggregate data and track unique individuals of priority threatened species among institutions and adapting a pedigree-based population management tool that incorporates life-history aspects unique to plants. If approached collaboratively across regional, national, and global scales, these actions could transform ex situ conservation of threatened plant species.  相似文献   

4.
Abstract: Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant‐based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science‐based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.  相似文献   

5.
针对中国植物园稀有濒危植物的保护现状和存在问题进行分析,重点讨论了稀有濒危植物在植物园迁地保护的有效性问题,涉及稀有濒危植物在植物园迁地保护的生长和适应问题、稀有濒危植物在植物园重复栽培问题、稀有濒危植物在植物园迁地保护的有效种群大小问题、科学记录系统和监测中心的建立问题。就稀有濒危植物在植物园迁地保护的可持续发展提出了若干对策与建议:以植物园为基础形成保护的网络系统;加强稀有濒危植物迁地保护规划并突出重点;加强科学记录系统和监测中心的建立;多方筹措资金,加强支持强度;加强人才培训与学术交流。  相似文献   

6.
Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected‐area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus‐level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less‐than‐optimal phylogenetic diversity and prioritization of range‐restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. Maximizar la Riqueza Filogenética de los Bancos de Semillas  相似文献   

7.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   

8.
Abstract: Searching for indicator taxa representative of diverse assemblages, such as arthropods, is an important objective of many conservation studies. We evaluated the impacts of a wide gradient of disturbance in Gabon on a range of arthropod assemblages representing different feeding guilds. We examined 4 × 105 arthropod individuals from which 21 focal taxa were separated into 1534 morphospecies. Replication included the understory of 3 sites in each of 4 different stages of forest succession and land use (i.e., habitats) after logging (old and young forests, savanna, and gardens). We used 3 complementary sampling methods to survey sites throughout the year. Overall differences in arthropod abundance and diversity were greatest between forest and open habitats, and cleared forest invaded by savanna had the lowest abundance and diversity. The magnitude of faunal differences was much smaller between old and young forests. When considered at this local scale, anthropogenic modification of habitats did not result in a monotonous decline of diversity because many herbivore pests and their associated predators and parasitoids were abundant and diverse in gardens, where plant productivity was kept artificially high year‐round through watering and crop rotation. We used a variety of response variables to measure the strength of correlations across survey locations among focal taxa. These could be ranked as follows in terms of decreasing number of significant correlations: species turnover > abundance > observed species richness > estimated species richness > percentage of site‐specific species. The number of significant correlations was generally low and apparently unrelated to taxonomy or guild structure. Our results emphasize the value of reporting species turnover in conservation studies, as opposed to simply measuring species richness, and that the search for indicator taxa is elusive in the tropics. One promising alternative might be to consider “predictor sets” of a small number of taxa representative of different functional groups, as identified in our study.  相似文献   

9.
Patterns of Genetic Diversity and Its Loss in Mammalian Populations   总被引:3,自引:0,他引:3  
Abstract:  Policy aimed at conserving biodiversity has focused on species diversity. Loss of genetic diversity, however, can affect population persistence, evolutionary potential, and individual fitness. Although mammals are a well-studied taxonomic group, a comprehensive assessment of mammalian genetic diversity based on modern molecular markers is lacking. We examined published microsatellite data from populations of 108 mammalian species to evaluate background patterns of genetic variability across taxa and body masses. We tested for loss of genetic diversity at the population level by asking whether populations that experienced demographic threats exhibited lower levels of genetic diversity. We also evaluated the effect of ascertainment bias (a reduction in variability when microsatellite primers are transferred across species) on our assessment of genetic diversity. Heterozygosity did not vary with body mass across species ranging in size from shrews to whales. Differences across taxonomic groupings were noted at the highest level, between populations of marsupial and placental mammals. We documented consistently lower heterozygosity, however, in populations that had experienced demographic threats across a wide range of mammalian species. We also documented a significant ( p = 0.01) reduction in heterozygosity as a result of ascertainment bias. Our results suggest that populations of both rare and common mammals are currently losing genetic diversity and that conservation efforts focused above the population level may fail to protect the breadth of persisting genetic diversity. Conservation policy makers may need to focus their efforts below the species level to stem further losses of genetic resources.  相似文献   

10.
Abstract:  Remnant plants in urban fringes and native plants in gardens have the potential to contribute to the conservation of threatened plants by increasing genetic diversity, effective size of populations, and levels of genetic connectedness. But they also pose a threat through the disruption of locally adapted gene pools. At Hyams Beach, New South Wales, Australia, four bushland stands of the rare shrub, Grevillea macleayana McGillivray, surround an urban area containing remnant and cultivated specimens of this species. Numbers of inflorescences per plant, fruits per plant, and visits by pollinators were similar for plants in urban gardens and bushland. Urban plants represented a substantial but complex genetic resource, displaying more genetic diversity than bushland plants judged by He , numbers of alleles per locus, and number of private alleles. Of 27 private alleles in urban plants, 17 occurred in a set of 19 exotic plants. Excluding the exotic plants, all five stands displayed a moderate differentiation ( FST = 0.14 ± 0.02), although the urban remnants clustered with two of the bushland stands. These patterns may be explained by high levels of selfing and inbreeding in this species and by long-distance dispersal (several seeds in the urban stand were fathered by plants in other stands). Genetic leakage (gene flow) from exotic plants to 321 seeds on surrounding remnant or bushland plants has not occurred. Our results demonstrate the conservation value of this group of urban plants, which are viable, productive, genetically diverse, and interconnected with bushland plants. Gene flow has apparently not yet led to genetic contamination of bushland populations, but high levels of inbreeding would make this a rare event and difficult to detect. Remnant plants in urban gardens could successfully contribute to recovery plans for endangered and vulnerable species.  相似文献   

11.
The depletion of shallow-water fish stocks through overexploitation has led to increasing fishing pressure on deep-sea species. Poor knowledge of the biology of commercially valuable deep-water fish has led to the serial depletion of stocks of several species across the world. Data regarding the genetic structure of deep-sea fish populations is important in determining the impact of overfishing on the overall genetic variability of species and can be used to estimate the likelihood of recolonisation of damaged populations through immigration of individuals from distant localities. Here the genetic structure of the commercially fished deep-water species the blackspot sea bream, Pagellus bogaraveo is investigated in the northeastern Atlantic using partial DNA sequencing of mitochondrial cytochrome b (cyt-b) and D-loop regions and genotyping of microsatellite loci. An absence of variation in cyt-b and low genetic variation in D-loop sequences potentially indicate that P. bogaraveo may have undergone a severe bottleneck in the past. Similar bottlenecks have been detected in other Atlantic species of fish and have possibly originated from the last glaciation. P. bogaraveo may have been particularly vulnerable to the effects of low temperature and a fall in sea level because stages of its life history occur in shallow water and coastal sites. However, there are other explanations of low genetic variability in populations of P. bogaraveo, such as a low population size and the impacts of fishing on population structure. Analysis of population structure using both D-loop and microsatellite analysis indicates low to moderate, but significant, genetic differentiation between populations at a regional level. This study supports studies on other deep-sea fish species that indicate that hydrographic or topographic barriers prevent dispersal of adults and/or larvae between populations at regional and oceanographic scales. The implications for the management and conservation of deep-sea fish populations are discussed.Communicated by J.P. Thorpe, Port Erin  相似文献   

12.
Tack AJ  Roslin T 《Ecology》2011,92(8):1594-1604
Recent studies suggest that intraspecific genetic diversity in one species may leave a substantial imprint on the surrounding community and ecosystem. Here, we test the hypothesis that genetic diversity within host-plant patches translates into consistent and ecologically important changes in the associated herbivore community. More specifically, we use potted, grafted oak saplings to construct 41 patches of four saplings each, with one, two, or four tree genotypes represented among the host plants. These patches were divided among two common gardens. Focusing first at the level of individual trees, we assess how tree-specific genotypic identity, patch-level genetic diversity, garden-level environmental variation, and their interactions affect the structure of the herbivore community. At the level of host-plant patches, we analyze whether the joint responses of herbivore species to environmental variation and genetic diversity result in differences in species diversity among tree quartets. Strikingly, both species-specific abundances and species diversity varied substantially among host-tree genotypes, among common gardens, and among specific locations within individual gardens. In contrast, the genetic diversity of the patch left a detectable imprint on local abundances of only two herbivore taxa. In both cases, the effect of genetic diversity was inconsistent among gardens and among host-plant genotypes. While the insect community differed significantly among individual host-plant genotypes, there were no interactive effects of the number of different genotypes within the patch. Overall, additive effects of intraspecific genetic diversity of the host plant explained a similar or lower proportion (7-10%) of variation in herbivore species diversity than did variation among common gardens. Combined with the few previous studies published to date, our study suggests that the impact of host-plant genetic diversity on the herbivore community can range from none to nonadditive, is generally low, and reaches its most pronounced impact at small spatial scales. Overall, our findings strengthen the emerging view that the impacts of genetic diversity are system, scale, and context dependent. As the next step in community genetics, we should then start asking not only whether genetic diversity matters, but under what circumstances its imprint is accentuated.  相似文献   

13.
Current rates of climate change require organisms to respond through migration, phenotypic plasticity, or genetic changes via adaptation. We focused on questions regarding species’ and populations’ ability to respond to climate change through adaptation. Specifically, the role adaptive introgression, movement of genetic material from the genome of 1 species into the genome of another through repeated interbreeding, may play in increasing species’ ability to respond to a changing climate. Such interspecific gene flow may mediate extinction risk or consequences of limited adaptive potential that result from standing genetic variation and mutation alone, enabling a quicker demographic recovery in response to changing environments. Despite the near dismissal of the potential benefits of hybridization by conservation practitioners, we examined a number of case studies across different taxa that suggest gene flow between sympatric or parapatric sister species or within species that exhibit strong ecotypic differentiation may represent an underutilized management option to conserve evolutionary potential in a changing environment. This will be particularly true where advanced‐generation hybrids exhibit adaptive traits outside the parental phenotypic range, a phenomenon known as transgressive segregation. The ideas presented in this essay are meant to provoke discussion regarding how we maintain evolutionary potential, the conservation value of natural hybrid zones, and consideration of their important role in adaptation to climate.  相似文献   

14.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

15.
The persistence of endangered species may depend on the fate of a very small number of individual animals. In situ conservation alone may sometimes be insufficient. In these instances, the International Union for Conservation of Nature provides guidelines for ex situ conservation and the Convention on Biological Diversity (CBD) indicates how ex situ management can support the CBD's objectives by providing insurance policies for species. The circumstances that justify its use are uncertain. To evaluate the current in situ extinction risk and ex situ management of 43 critically endangered species of mammalian megafauna, we used nonmetric multidimensional scaling and geopolitical variables related to governance, economics, and national policy within their extant ranges. We then fitted generalized additive models to assess the contribution of each variable to the ordination. Fifteen (almost one-third) of the world's terrestrial mammalian megafauna are not the subject of any ex situ management. Seventy-three percent of these taxa occur in areas characterized by political uncertainty, such as border zones or areas affected by armed conflicts, mainly in Africa and the Middle East. A further 23% of taxa in ex situ programs do not meet sustainability criteria for inbreeding avoidance. Strategic conservation planning, such as the One Plan approach, may improve ex situ management for these taxa. Given the escalating trend in threats afflicting megafauna, ex situ management should be considered more rigorously, particularly in politically unstable regions, to achieve CBD Target 12 (prevent extinction of threatened species).  相似文献   

16.
Understanding the scale of marine population connectivity is critical for the conservation and sustainable management of marine resources. For many marine species adults are benthic and relatively immobile, so patterns of larval dispersal and recruitment provide the key to understanding marine population connectivity. Contrary to previous expectations, recent studies have often detected unexpectedly low dispersal and fine-scale population structure in the sea, leading to a paradigm shift in how marine systems are viewed. Nonetheless, the link between fine-scale marine population structure and the underlying physical and biological processes has not been made. Here we show that patterns of genetic structure and population connectivity in the broadcast-spawning and long-distance dispersing sea urchin Centrostephanus rodgersii are influenced by physical oceanographic and geographic variables. Despite weak genetic differentiation and no isolation-by-distance over thousands of kilometers among samples from eastern Australia and northern New Zealand, fine-scale genetic structure was associated with sea surface temperature (SST) variability and geography along the southeastern Australian coast. The zone of high SST variability is characterized by periodic shedding of eddies from the East Australian Current, and we suggest that ocean current circulation may, through its influence on larval transport and recruitment, interact with the genetic consequences of large variance in individual reproductive success to generate patterns of fine-scale patchy genetic structure. If proven consistent across species, our findings suggest that the optimal scale for fisheries management and reserve design should vary among localities in relation to regional oceanographic variability and coastal geography.  相似文献   

17.
Abstract: The global amphibian crisis has resulted in renewed interest in captive breeding as a conservation tool for amphibians. Although captive breeding and reintroduction are controversial management actions, amphibians possess a number of attributes that make them potentially good models for such programs. We reviewed the extent and effectiveness of captive breeding and reintroduction programs for amphibians through an analysis of data from the Global Amphibian Assessment and other sources. Most captive breeding and reintroduction programs for amphibians have focused on threatened species from industrialized countries with relatively low amphibian diversity. Out of 110 species in such programs, 52 were in programs with no plans for reintroduction that had conservation research or conservation education as their main purpose. A further 39 species were in programs that entailed captive breeding and reintroduction or combined captive breeding with relocations of wild animals. Nineteen species were in programs with relocations of wild animals only. Eighteen out of 58 reintroduced species have subsequently bred successfully in the wild, and 13 of these species have established self‐sustaining populations. As with threatened amphibians generally, amphibians in captive breeding or reintroduction programs face multiple threats, with habitat loss being the most important. Nevertheless, only 18 out of 58 reintroduced species faced threats that are all potentially reversible. When selecting species for captive programs, dilemmas may emerge between choosing species that have a good chance of surviving after reintroduction because their threats are reversible and those that are doomed to extinction in the wild as a result of irreversible threats. Captive breeding and reintroduction programs for amphibians require long‐term commitments to ensure success, and different management strategies may be needed for species earmarked for reintroduction and species used for conservation research and education.  相似文献   

18.
Designing the Ark: Setting Priorities for Captive Breeding   总被引:2,自引:0,他引:2  
Zoos can help conserve only a small minority of the species threatened with extinction. Clear and rational criteria for identifying which threatened taxa zoos should focus on are therefore essential. Current priorities for ex situ conservation stress the importance of large vertebrates. We show that this hampers the efficient use of resources because such species are less likely to breed well in captivity than smaller-bodied taxa and, despite longer generation lengths, are more costly to maintain in long-term breeding programs. Moreover, although reintroduction to the wild frees zoo space for other species and is the ultimate aim of captive breeding, zoos show no tendency to target species for which continued habitat availability makes reintroduction a realistic prospect. We suggest that zoos adopt selection criteria that reflect the economic and biological realities of captive breeding and reintroduction if they are to maximize their contribution to species conservation, and we present data on the preferences of zoo visitors indicating that doing so need not adversely affect zoo attendance.  相似文献   

19.
Limitations of Captive Breeding in Endangered Species Recovery   总被引:17,自引:0,他引:17  
The use of captive breeding in species recovery has grown enormously in recent years, but without a concurrent growth in appreciation of its limitations. Problems with (1) establishing self-sufficient captive populations, (2) poor success in reintroductions, (3) high costs, (4) domestication, (5) preemption of other recovery techniques, (6) disease outbreaks, and (7) maintaining administrative continuity have all been significant. The technique has often been invoked prematurely and should not normally be employed before a careful field evaluation of costs and benefits of all conservation alternatives has been accomplished and a determination made that captive breeding is essential for species survival. Merely demonstrating that a species' population is declining or has fallen below what may be a minimum viable size does not constitute enough analysis to justify captive breeding as a recovery measure. Captive breeding should be viewed as a last resort in species recovery and not a prophylactic or long-term solution because of the inexorable genetic and phenotypic changes that occur in captive environments. Captive breeding can play a crucial role in recovery of some species for which effective alternatives are unavailable in the short term. However, it should not displace habitat and ecosystem protection nor should it be invoked in the absence of comprehensive efforts to maintain or restore populations in wild habitats. Zoological institutions with captive breeding programs should operate under carefully defined conditions of disease prevention and genetic/behavioral management. More important, these institutions should help preserve biodiversity through their capacities for public education, professional training, research, and support of in situ conservation efforts.  相似文献   

20.
Abstract:  Captive-bred animals derived from native, alien, or hybrid stocks are often released in large numbers in natural settings with the intention of augmenting harvests. In brown trout ( Salmo trutta ), stocking with hatchery-reared non-native fish has been the main management strategy used to maintain or improve depleted wild brown trout populations in Iberian and other Mediterranean regions. This measure has become a serious threat to the conservation of native genetic diversity, mainly due to introgressive hybridization. Aware of this risk, the agency responsible for management of brown trout in the eastern Pyrenees (Spain) created "brown trout genetic refuges" to preserve the integrity of brown trout gene pools in this region. Within refuge areas, the prerefuge status with respect to fishing activities has been maintained, but hatchery releases have been banned completely. We evaluated this management strategy through a comparison of the stocking impact on native populations that accounted for stocking histories before and after refuge designations and fishing activities. In particular we examined the relevant scientific, cultural, and political challenges encountered. Despite agency willingness to change fishery policies to balance exploitation and conservation, acceptance of these new policies by anglers and genetic monitoring of refuge populations should also be considered. To improve management supported by genetic refuges, we suggest focusing on areas where the public is more receptive, considering the situation of local native diversity, and monitoring of adjacent introgressed populations. We recommend the use of directional supportive breeding only when a population really needs to be enhanced. In any case, management strategies should be developed to allow for protection within the context of human use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号