首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同堆肥方式对鸡粪与秸秆混合堆肥效果   总被引:2,自引:0,他引:2  
以鸡粪和玉米秸秆为堆肥原材料,进行了露天堆肥和反应器堆肥对比实验。结果表明,反应器堆肥(堆体P2)较露天堆肥(堆体P1)升温快,堆体P2达到了《粪便无害化卫生标准(GB7959—87)》的要求,堆体P1未达到;在整个堆肥过程中,堆体P1的水分总损失量(26.5%)大于堆体P2的水分总损失量(20.6%);堆体P1和P2的有机质降解主要发生在堆肥前期0~21d,分别完成了81.4%和84.5%的有机质降解量;堆体P1和P2的C/N比在堆肥过程中均呈下降趋势,最终C/N比分别为18.3和14.8;种子发芽指数GI_P1〈GI_P2,表明采用堆体P2的堆肥产品的植物毒性较堆体P1更小。各指标实测数据表明,反应器堆肥的堆肥产品的稳定性和腐熟程度较露天堆肥更好。  相似文献   

2.
To achieve successful composting, all the biological, chemical, and physical characteristics need to be considered. The investigation of our study was based on various physicochemical properties, i.e., temperature, ammonia concentration, carbon dioxide concentration, pH, electrical conductivity (EC), carbon/nitrogen (C/N) ratio, organic matter (OM) content, moisture content, bacterial population, and seed germination index (GI), during the composting of poultry manure and sawdust for different aeration rates and reactor shapes. Three cylindrical-shaped and three rectangular-shaped pilot-scale 60-L composting reactors were used in this study, with aeration rates of 0.3 (low), 0.6 (medium), and 0.9 (high) L min?1 kg?1 DM (dry matter). All parameters were monitored over 21 days of composting. Results showed that the low aeration rate (0.3 L min?1 kg?1 DM) corresponded to a higher and longer thermophilic phase than did the high aeration rate (0.9 L min?1 kg?1 DM). Ammonia and carbon dioxide volatilization were directly related to the temperature profile of the substrate, with significant differences between the low and high aeration rates during weeks 2 and 3 of composting but no significant difference observed during week 1. At the end of our study, the final values of pH, EC, moisture content, C/N ratio, and organic matter in all compost reactors were lower than those at the start. The growth rates of mesophilic and thermophilic bacteria were directly correlated with mesophilic and thermophilic conditions of the compost. The final GI of the cylindrical reactor with an airflow rate of 0.3 L min?1 kg?1 DM was 82.3%, whereas the GIs of the other compost reactors were below 80%. In this study, compost of a cylindrical reactor with a low aeration rate (0.3 L min?1 kg?1 DM) was more stable and mature than the other reactors.

Implications: The poultry industry is growing in South Korea, but there are problems associated with the management of poultry manure, and composting is one solution that could be valuable for crops and forage if managed properly. For high-quality composting, the aeration rate in different reactor shapes must be considered. The objective of this study was to investigate various physicochemical properties with different aeration rates and rector shapes. Results showed that aeration rate of 0.3 L min?1 kg?1 DM in a cylindrical reactor provides better condition for maturation of compost.  相似文献   


3.
Microbial activity during composting of anthracene-contaminated soil   总被引:10,自引:0,他引:10  
Ma Y  Zhang JY  Wong MH 《Chemosphere》2003,52(9):1505-1513
Microbial activity of an anthracene-spiked soil mixed with kitchen waste during laboratory composting at 56-59 degrees C was studied using an in-vessel technology. The effect of old compost containing acclimated microorganisms on the composting efficiency was also investigated. Microbial succession, microbial enzyme activity, microbial diversity and anthracene removal rate were analyzed during 42 days of composting. The results demonstrated that inoculating with old compost increased the amounts of thermophilic microorganisms, but did not significantly increase anthracene removal. A microbial succession from mesophilic bacteria to thermophilic bacteria and thermophilic actinomycetes was observed during composting. Polyphenol oxidase activity decreased while catalase activity varied irregularly. Microbial diversity increased drastically when temperature elevated from 35 to 56 degrees C, but decreased when temperature maintained at 56-59 degrees C.  相似文献   

4.
To investigate the effects of seasonal temperatures on the composting of spent pig-manure sawdust litter (spent litter), two sets of experiments were carried out: one during winter, the other during summer. Physicochemical and microbial parameters including temperature, pH, inorganic N, humification indicators (HA and FA), heavy metals (Cu and Zn), total aerobic heterotrophs, ATP content and dehydrogenase activity were measured to understand changes in the spent litter during composting. Results demonstrated that the composting was faster during summer than winter. The spent litter during the summer trial reached maturity at day 56 whereas that of the winter trial was still immature at the end of composting (days 91). Microbial activities during the thermophilic stage of composting were much lower in the winter trial. Values began to increase during the latter part of composting, indicating that the spent litter in this winter trial was biologically unstable and must be further composted to reach full maturity. The changes in the microbial activities of the spent litter during summer or winter reflected the changes in their temperatures and chemical properties. The maturation of the spent litter during summer was accompanied by stabilization of the microbial and chemical properties and a drop in temperature to ambient level. Results of correlation analysis showed that temperature correlated not only with the microbial parameters but also with most of the chemical parameters. These parameters also correlated with each other. Among all the parameters measured, the trend of temperature changes is the simplest and most rapid parameter that can be used to evaluate the maturity of spent litter.  相似文献   

5.
Amir S  Hafidi M  Merlina G  Hamdi H  Revel JC 《Chemosphere》2005,58(4):449-458
The fate of 16 polycyclic aromatic hydrocarbons (PAHs), targeted by the USEPA agency, has been investigated during composting of lagooning sludge. Composting shows efficient decrease of the content and the bioavailability of each PAH. Biodegradation and sorption are suggested as the main mechanisms contributing to this decrease. During the stabilization phase of composting, extensive microbial degradation of PAHs, mainly those with a low number of aromatic rings, was achieved following development of intense thermophilic communities. However, partial sorption of PAH to non-accessible sites temporarily limits the mobility mainly of PAHs with a high number of aromatic rings plus acenaphthene and acenaphthylene, and allows them to escape microbial attack. During the maturation phase, the development of a mesophilic population could play an important role in the degradation of the remaining PAH. During this phase of composting, PAH sequestration and binding of their oxidative metabolites within new-formed humic substances might also explain PAH decrease at the end of composting. The tendency of change of content or bioavailability of various PAH compounds during composting is found to be strongly related to the number of their aromatic rings, their molecular weight and structure.  相似文献   

6.
We examined chemical, microbiological and biochemical parameters in order to assess their effectiveness as stability and maturity indicators during the composting process of cattle manure. The composting material obtained after 15 d in trenches and at different times during the maturation phase (i.e. 80, 180 and 270 d) were analyzed. We found that the material collected at the end of the active phase was inadequate to be applied to soil as organic amendment due to its high content of NH4+, its high level of phytotoxicity and the low degree of organic matter stability. After a maturation period of 80 d, the stability of the sample increased. This was shown by a reduction in the dissolved organic carbon (DOC) content and NH4+ concentration and also by a reduction in the microbial activity and biomass; however, 180 d of composting were not sufficient to reduce the phytotoxicity to levels consistent for a safe soil application. Among the various parameters studied, the change in DOC with composting time gave a good indication of stability.  相似文献   

7.
Pagans E  Barrena R  Font X  Sánchez A 《Chemosphere》2006,62(9):1534-1542
Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wastes investigated revealed a strong dependence on temperature, with a distinct pattern found in ammonia emissions for each waste in the thermophilic first stage of composting (exponential increase of ammonia emitted when increasing temperature) than that of the mesophilic final stage (linear increase of ammonia emissions when increasing temperature). As composting needs high temperatures to ensure the sanitisation of compost and ammonia emissions are one of the main environmental impacts associated to composting and responsible for obtaining compost with a low agronomical quality, it is proposed that sanitisation is conducted after the first stage in large-scale composting facilities by a proper temperature control. CAPSULE: Ammonia emission pattern and correlation with process temperature are presented for the composting process of different organic wastes.  相似文献   

8.
抗生素菌渣堆肥进程中微生物群落的变化   总被引:3,自引:0,他引:3  
将青霉素菌渣、林可霉素菌渣与牛粪等原料分别进行好氧堆肥实验,以考察堆肥过程中不同菌渣对微生物群落的影响。在堆制的41d里,根据温度变化分阶段采集堆肥样品,采用稀释倒平板法测定细菌、放线菌和真菌的数量。结果表明,菌渣不同,其堆肥中的微生物群落变化趋势不同。青霉素菌渣堆肥中细菌数量变化趋势为高一低,真菌数量变化趋势为高一低.高,放线菌数量为逐渐增加;林可霉素菌渣堆肥过程中细菌数量变化趋势为低一高一低,放线菌和真菌数量变化趋势为高.低.高。依据真菌菌落形态观察,菌渣堆肥中的真菌种类比对照牛粪堆肥单一,表明两种菌渣对堆肥中的微生物多样性均产生了不利影响。林可霉素菌渣堆肥初始时的细菌数量比对照低1个数量级,放线菌数量在整个堆肥进程中都明显低于对照,堆肥结束时,随着菌渣含量的增加,放线菌数量逐渐下降,高温期真菌数量下降幅度随着菌渣含量增加而加大,表明林可霉素菌渣对细菌、放线菌和真菌均有不同程度的抑制。堆肥化后菌渣中林可霉素残留量的减少表明,在一定条件下堆肥处理可以将抗生素菌渣无害化和资源化。  相似文献   

9.
10.
粪便与生活垃圾混合堆肥过程控制   总被引:2,自引:0,他引:2  
采用强制通风静态仓进行粪便和生活垃圾混合堆肥,以玉米秸为调理剂,石灰调节pH,考察正压鼓风和负压抽吸2种通风方式对不同堆料配比堆肥过程的控制效果。试验结果表明,5种堆料配比的中层温度都达到了50℃,并保持了5 d以上,达到了堆肥无害化和稳定化的要求。正压鼓风堆料底部温度较低,负压抽吸堆料底部热量容易聚集,但是后者堆体温度分布相对均匀。负压抽吸对水分的去除效果差于正压鼓风。对于温度未达到50℃的堆料应回流处理保证无害化。粪便有机物含量高,堆肥初期易酸化,添加石灰调节pH,使堆肥顺利升温,缩短发酵期,石灰合理添加量为2%(质量分数)。采用负压抽吸的通风方式,散除堆肥初期的挥发性有机酸,再经过冷凝除臭器脱酸除臭后排放,是一种可取的方式。  相似文献   

11.
The study was undertaken to determine the impact of high-metal composts on the activities of four soil enzymes. High concentrations of metal salts (Cr, Cu, Ni or a Co-Mo-Pb combination) were added to feedstocks during the thermophilic stage of composting. These four metal-enriched composts and an unamended control compost were then mixed with soil collected from long-term agriculture plots under organic management or conventional management. The compost-soil mixtures were prepared at two rates (1:1 or 1:3 compost:soil, v/v) and incubated at 20°C for three weeks. These 20 combinations plus the five composts and the two soils were added to pots and incubated for three weeks. Following incubation, soil enzyme activities (acid phosphatase, arysulfatase, dehydrogenase, phosphodiesterase) were measured using traditional assay procedures. Compared to the control, none of the high-metal composts inhibited soil enzyme activity. Notably, the Cu compost treatment produced significantly higher activity of all four enzymes in the soil compared to the control. Previous soil management influenced the activity of three enzymes, arysulfatase and dehydrogenase had greater activity in the organic soil while phosphatase activity was greater in the conventional soil. Increasing the proportion of compost in the pot had a positive effect on phosphodiesterase activity only. In conclusion, the high-metal compost treatments either enhanced or caused no adverse effects on soil enzyme activity.  相似文献   

12.
生活垃圾堆肥分阶段反应动力学研究   总被引:1,自引:0,他引:1  
根据堆肥不同阶段特点 ,通过接种和不接种堆肥实验 ,分别研究升温 -高温阶段和高温 -降温阶段动力学。从得到的动力学方程分析可知 :接种复合微生物菌剂 ,在升温 -高温阶段最大反应速率比对照组提高约 13 8.7 ;在高温 -降温阶段最大反应速率比对照组大 4.73 g/( h· kg) ,而半速系数 Km比对照组下降了 10 3 g/kg。说明接种复合微生物菌剂不仅使反应速率增大 ,而且使半速系数减小 ,使底物与酶反应更完全 ,有机物分解更迅速、更彻底  相似文献   

13.
Use of municipal biowaste for composting instead of its disposal has become a major source of concern as regards contamination by hazardous substances. To elucidate the hazard potential of compost application, municipal biowaste was amended with 14C-labelled model substances (pyrene, simazine) and incubated in a pilot-scale composting simulation system. A mass balance incorporating the mineralization, metabolism and sorption of the two model substances was established over a period of 370 days. The results are quite different for the two chemicals, reflecting their intrinsic properties: more than 60% of the applied 14C-simazine resulted in non-extractable residues (NER). Silylation experiments indicated that the formation of NER from simazine and its metabolites was due to both physical entrapment in the matrix and chemical binding. The mineralization and formation of NER represented the major pathways of disappearance for pyrene during one year of composting, accounting for 60 and 26% of initially applied 14C-activity, respectively. Mineralization occurred delayed after the thermophilic phase. As regards remobilization, release of pyrene from NER during composting could be excluded, whereas simazine, data were inconclusive in this respect.  相似文献   

14.
To find a better composting process with low greenhouse gas emission and high humus production, the effect of adding kitchen waste on reduction and humification of organic matter during straw composting was studied. Three processes were compared, consisting of different ratios of straw and kitchen waste (1:2, 1:1, and 2:1). At four time points over a 62-d incubation, the reduction and humification of compost was evaluated by measuring the total mass, carbon content, and humic material content of the compost. Treatment 1 (straw/kitchen waste ratio of 1:2) reduced the total mass of compost the most. Treatment 2 (straw/kitchen waste ratio of 1:1) reduced the total carbon content the most, reflecting the highest emission of greenhouse gas. Treatment 3 produced the most humic acid material and released the lowest amount of carbon. Hence, from the point of view of reducing greenhouse gas emissions and increasing stable organic matter such as humus and humic acid during composting, treatment #3 was optimal. The three treatments resulted in significant differences in microbial biomass and enzyme activity during composting. The highest amount of active microbial biomass was associated with the largest reduction in compost mass (treatment 1). Higher proportions of straw (treatments 2 and 3), which contains more lignin, were associated with greater β-glycosidase activity, which may generate more humus that can improve soil quality. Dehydrogenase activity seemed to be the most important microbial factor in organic carbon catabolism or humification.  相似文献   

15.
采用静态强制通风好氧堆肥模式对城市剩余污泥进行堆肥降解,并研究了生物表面活性剂鼠李糖脂对堆肥过程的作用。结果表明,堆肥过程中,添加了质量分数为0.015%鼠李糖脂溶液堆制处理和空白对照堆制处理的堆温变化都明显呈现出中温期0~5 d、高温期6~12 d和降温期13~28 d 3个阶段。实验组比空白组的堆体升温快、高温期持续时间长、堆体的含水率高。鼠李糖脂的添加,使实验组的微生物数量高于空白组。添加鼠李糖脂的堆体和空白堆体的种子发芽指数(GI)在堆肥结束时分别为53.70%和50.80%,说明鼠李糖脂促进了堆肥的腐熟,但由于相对浓缩效应,堆肥产品的重金属含量略高于空白堆体。生物表面活性剂的介入促进了堆肥中木质纤维素的初步降解。研究表明,添加鼠李糖脂能够改善堆肥处理的微环境,促进有机质降解和堆肥的腐熟。  相似文献   

16.
Biodegradable polymers are designed to resist a number of environmental factors during use, but to be biodegradable under disposal conditions. The biodegradation of polylactide (PLLA) was studied at different elevated temperatures in both aerobic and anaerobic, aquatic and solid state conditions. In the aerobic aquatic headspace test the mineralisation of PLLA was very slow at room temperature, but faster under thermophilic conditions. The clear effect of temperature on the biodegradability of PLLA in the aquatic tests indicates that its polymer structure has to be hydrolysed before microorganisms can utilise it as a nutrient source. At similar elevated temperatures, the biodegradation of PLLA was much faster in anaerobic solid state conditions than in aerobic aquatic conditions. The behaviour of PLLA in the natural composting process was similar to that in the aquatic biodegradation tests, biodegradation starting only after the beginning of the thermophilic phase. These results indicate that PLLA can be considered as a compostable material, being stable during use at mesophilic temperatures, but degrading rapidly during waste disposal in compost or anaerobic treatment facilities.  相似文献   

17.
Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH3 and H2S during the aerobic composting process was 742 g ton-1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton-1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.  相似文献   

18.
Fate of nitrogen during composting of chicken litter   总被引:25,自引:0,他引:25  
Chicken litter (a mixture of chicken manure, wood shavings, waste feed, and feathers) was composted in forced-aeration piles to understand the changes and losses of nitrogen (N) during composting. During the composting process, the chemical [different N fractions, organic matter (OM), organic carbon (C), and C:N ratio], physical, and microbial properties of the chicken litter were examined. Cumulative losses and mass balances of N and organic matter were also quantified to determine actual losses during composting. The changes in total N concentration of the chicken litter piles were essentially equal to those of the organic N. The inorganic N concentrations were low, and that organic N was the major nitrogenous constituent. The ammonium (NH(4)(+))-N concentration decreased dramatically during first 35 days of composting. However, the rapid decrease in NH(4)(+)-N during composting did not coincide with a rapid increase in (NO(3)(-)+NO(2)(-))-N concentration. The concentration of (NO(3)(-)+NO(2)(-))-N was very low (<0.5 g kg(-1)) at day 0, and this level remained unchanged during the first 35 days of composting suggesting that N was lost during composting. Losses of N in this composting process were governed mainly by volatilization of ammonia (NH(3)) as the pile temperatures were high and the pH values were above 7. The narrow C:N ratio (<20:1) have also contributed to losses of N in the chicken litter. The OM and total organic C mass decreased with composting time. About 42 kg of the organic C was converted to CO(2). On the other hand, 18 kg was lost during composting. This loss was more than half (59%) of the initial N mass of the piles. Such a finding demonstrates that composting reduced the value of the chicken litter as N fertilizer. However, the composted chicken contained a more humified (stabilized) OM compared with the uncomposted chicken litter, which would enhance its value as a soil conditioner.  相似文献   

19.
This study examined physicochemical parameters to assess their effectiveness as stability and maturity indicators during the process of composting pig manure and fungus residue at different ratios. The results showed that composting mixtures with all ratios of pig manure to fungus residue maintained a temperature exceeding 50 °C for more than 10 days during composting and met the requirement for pathogen destruction. The treatment containing mainly pig manure showed higher nitrogen loss and a shorter thermophilic phase and maturity time than the treatment containing mainly fungus residue. The germination index (GI) values indicated that compost maturity was achieved in the final compost with initial ratios of pig manure to fungus residue of 9:1–7:3 (GIs of 101.4%, 91.2%, and 81.3%); the ratio of 6:4 did not reach compost maturity (GI of 63.8%) and had an inhibitory effect on seed germination. The results of this study suggest that a ratio of pig manure to fungus residue of approximately 8:2 can be considered suitable for the efficient and quality composting of pig manure and fungus residue.

Implications: Co-composting of pig manure and edible fungi residue with appropriate proportion can effectively reduce the risk of environmental pollution caused by agricultural wastes, as well as achieve a safer and high-quality organic fertilizer, which can be used to improve physical and chemical properties of the soil, increase crop yields, and promote agricultural sustainable development. Therefore, technique of co-composting of pig manure and edible fungi residue has a wide prospect of application in practical production all over the world.  相似文献   


20.
The effects of inoculants on the composting of Sophora flavescens residues were evaluated based on several physical, chemical and biological parameters, as well as the infrared spectra. Compared to the control compost without inoculants, the treatment compost with inoculants (Bacillus subtilis strain G-13 and Chaetomium thermophilum strain GF-1) had a significantly longer thermophilic duration, higher cellulase activity and a higher degradation rate of cellulose, hemicellulose and lignin (P < 0.05). Thus, a higher maturity degree of compost with apparently lower C:N ratio (15.88 vs. 17.77) and NH4-N:NO3-N ratio (0.16 vs. 0.20) was obtained with the inoculation comparing with the control (P < 0.05). Besides, the inoculants could markedly accelerate the composting process and increase the maturity degree of compost as indicated by the germination index (GI) in which the treatment reached the highest GI of 133.2% at day 15 while the control achieved the highest GI of 125.7% at day 30 of the composting. Inoculation with B. subtilis and C. thermophilum is a useful method to enhance the S. flavescens residues composting according to this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号