首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Formulating an ecosystem approach to environmental protection   总被引:2,自引:1,他引:1  
The U.S. Environmental Protection Agency (EPA) has embraced a new strategy of environmental protection that is place-driven rather than program-driven. This new approach focuses on the protection of entire ecosystems. To develop an effective strategy of ecosystem protection, however, EPA will need to: (1) determine how to define and delineate ecosystems and (2) categorize threats to individual ecosystems and priority rank ecosystems at risk. Current definitions of ecosystem in use at EPA are inadequate for meaningful use in a management or regulatory context. A landscape-based definition that describes an ecosystem as a volumetric unit delineated by climatic and landscape features is suggested. Following this definition, ecosystems are organized hierarchically, from megaecosystems, which exist on a continental scale (e.g., Great Lakes), to small local ecosystems.Threats to ecosystems can generally be categorized as: (1) ecosystem degradation (occurs mainly through pollution) (2) ecosystem alteration (physical changes such as water diversion), and (3) ecosystem removal (e.g., conversion of wetlands or forest to urban or agricultural lands). Level of threat (i.e., how imminent), and distance from desired future condition are also important in evaluating threats to ecosystems. Category of threat, level of threat, and distance from desired future condition can be combined into a three-dimensional ranking system for ecosystems at risk. The purpose of the proposed ranking system is to suggest a preliminary framework for agencies such as EPA to prioritize responses to ecosystems at risk.  相似文献   

2.
Land use change can significantly affect the provision of ecosystem services and the effects could be exacerbated by projected climate change. We quantify ecosystem services of bioenergy‐based land use change and estimate the potential changes of ecosystem services due to climate change projections. We considered 17 bioenergy‐based scenarios with Miscanthus, switchgrass, and corn stover as candidate bioenergy feedstock. Soil and Water Assessment Tool simulations of biomass/grain yield, hydrology, and water quality were used to quantify ecosystem services freshwater provision (FWPI), food (FPI) and fuel provision, erosion regulation (ERI), and flood regulation (FRI). Nine climate projections from Coupled Model Intercomparison Project phase‐3 were used to quantify the potential climate change variability. Overall, ecosystem services of heavily row cropped Wildcat Creek watershed were lower than St. Joseph River watershed which had more forested and perennial pasture lands. The provision of ecosystem services for both study watersheds were improved with bioenergy production scenarios. Miscanthus in marginal lands of Wildcat Creek (9% of total area) increased FWPI by 27% and ERI by 14% and decreased FPI by 12% from the baseline. For St. Joseph watershed, Miscanthus in marginal lands (18% of total area) improved FWPI by 87% and ERI by 23% while decreasing FPI by 46%. The relative impacts of land use change were considerably larger than climate change impacts in this paper. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
Ecological risk assessment provides a methodology for evaluating the threats to ecosystem function associated with environmental perturbations or stressors. This report documents the development of a conceptual model for assessing the ecological risk to the water quality function (WQF) of bottomland hardwood riparian ecosystems (BHRE) in the Tifton-Vidalia upland (TVU) ecoregion of Georgia. Previus research has demonstrated that mature BHRE are essential to maintaining water quality in this portion of the coastal plain. The WQF of these ecosystems is considered an assessment endpoit—an ecosystem function or set of functions that society chooses to value as evidenced by laws, regulations, or common usage. Stressors operate on ecosystems at risk through an exposure scenario to produce ecological effects that are linked to loss of the desired function or assessment end point. The WQF of BHRE is at risk because of the ecological and environmental quality effects of a suite of chemical, physical, and biological stressors. The stressors are related to nonpoint source pollution from adjacent land uses, especially agriculture; the conversion of BHRE to other land uses; and the encroachment of domestic animals into BHRE. Potential chemical, physical, and biological stressors to BHRE are identified, and the methodology for evaluating appropriate exposure scenarios is discussed. Field-scale and watershed-scale measurement end points of most use in assessing the effects of stressors on the WQF are identified and discussed. The product of this study is a conceptual model of how risks to the WQF of BHRE are produced and how the risk and associated uncertainties can be quantified.  相似文献   

4.
ABSTRACT: Integrated watershed ecosystem studies in National Parks or equivalent reserves suggest that effects of external processes on “protected” resources are subtle, chronic, and long-term. Ten years of data from National Park watersheds suggests that temperature and precipitation changes are linked to nitrogen levels in lakes and streams. We envision measurable biotic effects in these remote watersheds, if expected climate trends continue. The condition of natural resources within areas set aside for preservation are difficult to ascertain, but gaining this knowledge is the key to understanding ecosystem change and of processes operating among biotic and abiotic ecosystem components. There is increasing evidence that understanding the magnitude of variation within and between such processes can provide an early indication of environmental change and trends attributable to human-induced stress. The following four papers are case studies of how this concept has been implemented.* These long-term studies have expanded our knowledge of ecosystem response to natural and human-induced stress. The existence of these sites with a commitment to gathering “long-term” ecosystem-level data permits research activities aimed at testing more important hypotheses on ecosystem processes and structure.  相似文献   

5.
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.  相似文献   

6.
A national approach to the conservation of biodiversity in Australia's freshwater ecosystems is a high priority. This requires a consistent and comprehensive system for the classification, inventory, and assessment of wetland ecosystems. This paper, using the State of Victoria as a case study, compares two classification systems that are commonly utilized to delineate and map wetlands--one based on hydrology (Victorian Wetland Database [VWD]) and one based on indigenous vegetation types and other natural features (Ecological Vegetation Classes [EVC]). We evaluated the extent of EVC mapping of wetlands relative to the VWD classification system using a number of datasets within a geographical information system. There were significant differences in the coverage of extant EVCs across bioregions, different-sized wetlands, and VWD wetland types. Resultant depletion levels were markedly different when examined using the two systems, with depletion levels, and therefore perceived conservation status, of EVCs being significantly higher. Although there is little doubt that many wetland ecosystems in Victoria are in fact threatened, the extent of this threat cannot accurately be determined by relying on the EVC mapping as it currently stands. The study highlighted the significant impact wetland classification methods have in determining the conservation status of freshwater ecosystems.  相似文献   

7.
Bioregional classifications are used extensively for conservation management and monitoring programs. This study used generalised dissimilarity modelling (GDM) to test the ability of different regional classifications of four groups of aquatic biota to be used as surrogates for each other. Classifications were derived for aquatic macrophytes, macroinvertebrates, freshwater fish and frogs using community-level modelling, or GDM, which relates the biotic assemblage structure with environmental variables. Six regions were defined for each biotic group for the State of New South Wales. Regional classifications differed markedly between the different biotic groups because the environmental drivers that were related to species turnover throughout the region differed among groups. Altitude and rainfall were the strongest drivers of species turnover among the groups. Results suggest that physiographic variables should be incorporated in reserve design and monitoring programs to explicitly address differences in classifications between similar biotic groups.  相似文献   

8.
Environmental quality assessment has to focus more on the quality of whole ecosystems, instead of focusing on the direct effects of a specific stressor, because of a more integrated environmetal policy approach. Yet, how can the ecosystem quality be measured? Partly this is a normative question, a question of what is considered good and bad. At the same time, it is a scientific question, dealing with the problem of low the state of a system as complex as an ecosystem could be measured. Measuring all abiotic and biotic components, not to mention their many relationships, is not feasible. In this article we review several approaches dealing with this scientific question. Three approaches are distinguished; they differ in type of variable set and ecosystem model used. As a result of this, the information about the state of the ecosystem differs: ultimate breadth, comprising information about the whole ecosystem, is at the expense of detail, while ultimate detail is at the expense of breadth. We discuss whether the resultant quality assessments differ in character and are therefore suitable to answer different policy questions.  相似文献   

9.
Annual expenditures by the federal government in the United States for agricultural conservation programs increased about 80 percent with passage of the 2002 Farm Bill. However, environmental benefits of these programs have not been quantified. A national project is under way to estimate the effect of conservation practices on environmental resources. The watershed models intended for use in that project are focused on water quantity and quality and have minimal habitat assessment capability. Major impairments to aquatic ecosystems in many watersheds consist of physical habitat degradation, not water quality, suggesting that current models for this national initiative do not address one of the most significant aspects of aquatic ecosystem degradation. Currently used models contain some components relevant to aquatic habitat, and this paper describes specific components that should be added to allow rudimentary stream habitat quality assessments. At least six types of variables could be examined for ecological impact: land use, streamflow, water temperature, streambed material type, large woody debris, and hydraulic conditions at base flow. All of these variables are influenced by the presence, location, and quality of buffers. Generation of stream corridor ecological or habitat quality indices might contribute to assessments of the success or failure of conservation programs. Additional research is needed to refine procedures for combining specific measures of stream habitat into ecologically meaningful indices.  相似文献   

10.
/ This paper presents a foundation for improving the risk assessmentprocess for freshwater wetlands. Integrating wetland science, i.e., use of anecosystem-based approach, is the key concept. Each biotic and abiotic wetlandcomponent should be identified and its contribution to ecosystem functionsand societal values determined when deciding whether a stressor poses anunreasonable risk to the sustainability of a particular wetland.Understanding the major external and internal factors that regulate theoperational conditions of wetlands is critical to risk characterization.Determining the linkages between these factors, and how they influence theway stressors affect wetlands, is the basis for an ecosystem approach.Adequate consideration of wetland ecology, hydrology, geomorphology, andsoils can greatly reduce the level of uncertainty associated with riskassessment and lead to more effective risk management. In order to formulateeffective solutions, wetland problems must be considered at watershed,landscape, and ecosystem scales. Application of an ecosystem approach can begreatly facilitated if wetland scientists and risk assessors work together todevelop a common understanding of the principles of both disciplines.KEY WORDS: Ecological risk assessment; Freshwater wetlands;Environmental pollution; Chemical stressors; Physical stressors; Biologicalstressors  相似文献   

11.
Understanding the best way to allocate limited resources is a constant challenge for water quality improvement efforts. The synoptic approach is a tool for geographic prioritization of these efforts. It uses a benefit-cost framework to calculate indices for functional criteria in subunits (watersheds, counties) of a region and then rank the subunits. The synoptic approach was specifically designed to incorporate best professional judgment in cases where information and resources are limited. To date, the synoptic approach has been applied primarily to local or regional wetland restoration prioritization projects. The goal of this work was to develop a synoptic model for prioritizing watersheds within which suites of agricultural best management practices (BMPs) can be implemented to reduce sediment load at the watershed outlets. The model ranks candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most sediment load reduction per conservation dollar invested. The model can be applied anywhere and at many scales provided that the selected suite of BMPs is appropriate for the evaluation area’s biophysical and climatic conditions. The model was specifically developed as a tool for prioritizing BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS conservation effects assessment project (CEAP). This paper presents the testing of the model in the little river experimental watershed (LREW) which is located near Tifton, Georgia, USA and is the CEAP watershed representing the southeastern coastal plain. The application of the model to the LREW demonstrated that the model represents the physical drivers of erosion and sediment loading well. The application also showed that the model is quite responsive to social and economic drivers and is, therefore, best applied at a scale large enough to ensure differences in social and economic drivers across the candidate watersheds. The prioritization model will be used for planning purposes. Its results are visualized as maps which enable resource managers to identify watersheds within which BMP implementation would result in the most water quality improvement per conservation dollar invested.  相似文献   

12.
The Southeastern United States is a global center of freshwater biotic diversity, but much of the regions aquatic biodiversity is at risk from stream degradation. Nonpoint pollution sources are responsible for 70% of that degradation, and controlling nonpoint pollution from agriculture, urbanization, and silviculture is considered critical to maintaining water quality and aquatic biodiversity in the Southeast. We used an ecological risk assessment framework to develop vulnerability models that can help policymakers and natural resource managers understand the impact of land cover changes on water quality in North Carolina. Additionally, we determined which landscape characteristics are most closely associated with macroinvertebrate community tolerance of stream degradation, and therefore with lower-quality water. The results will allow managers and policymakers to weigh the risks of management and policy decisions to a given watershed or set of watersheds, including whether streamside buffer protection zones are ecologically effective in achieving water quality standards. Regression analyses revealed that landscape variables explained up to 56.3% of the variability in benthic macroinvertebrate index scores. The resulting vulnerability models indicate that North Carolina watersheds with less forest cover are at most risk for degraded water quality and steam habitat conditions. The importance of forest cover, at both the watershed and riparian zone scale, in predicting macrobenthic invertebrate community assemblage varies by geographic region of the state.  相似文献   

13.
Indicators of ecosystem recovery   总被引:6,自引:0,他引:6  
  相似文献   

14.
15.
Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.  相似文献   

16.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

17.
We assessed the probability of three major natural hazards—windthrow, drought, and forest fire—for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.  相似文献   

18.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   

19.
Ecoregion delineations have gained increased attention in Europe, especially following the Water Framework Directive 2000/60/EC (WFD), which provides the European Union’s first policy-relevant ecoregion map. However, the WFD’s ecoregions were created through a minor adaptation of Illies’ (Limnofauna Europaea. Gustav Fisher Verlag, Stuttgart, 1967/1978) freshwater zoogeographic regions, and the map’s specific boundaries have not been widely evaluated with respect to the WFD’s uses or their biogeographic accuracy. We examined the WFD ecoregion boundaries in Greece and its neighboring Balkan states by comparing them with the most prominent freshwater biogeographic boundaries as shown by riverine freshwater fish assemblages. Classification and ordination analyses of 23 river basin fish assemblages helped delineate natural faunal break boundaries in freshwater species assemblage distributions depicting major biogeographic barriers to aquatic biota dispersal. However, these biogeographic boundaries differ from those delineated in the WFD map, suggesting boundary errors and inconsistencies in the delineation method of the WFD ecoregions. We reviewed specific boundary disagreements and produced a map showing the region’s most prominent freshwater biogeographic boundaries by charting them on watershed borders among the four biotically dissimilar river basin groups in the southern Balkans. This regional evaluation reveals both a need to reconcile disparate approaches to ecoregion mapping and to promote the development of a new policy-relevant inland waters ecoregion framework that would support broad-scale water management and aquatic conservation.  相似文献   

20.
Humans are rapidly depleting critical ecosystems and the life support functions they provide, increasing the urgency of developing effective conservation tools. Using a case study of the conversion of mangrove ecosystems to shrimp aquaculture, this article describes an effort to develop a transdisciplinary, transinstitutional approach to conservation that simultaneously trains future generations of environmental problem solvers. We worked in close collaboration with academics, non-government organizations, local government and local communities to organize a workshop in Puerto Princesa, Palawan, Philippines. The primary objectives of the workshop were to: (1) train participants in the basic principles of ecological economics and its goals of sustainable scale, just distribution and efficient allocation; (2) learn from local community stakeholders and participating scientists about the problems surrounding conversion of mangrove ecosystems to shrimp aquaculture; (3) draw on the skills and knowledge of all participants to develop potential solutions to the problem; and (4) communicate results to those with the power and authority to act on them. We found that the economic and ecological benefits of intact mangroves outweigh the returns to aquaculture. Perversely, however, private property rights to mangrove ecosystems favor inefficient, unjust and unsustainable allocation of the resource—a tragedy of the non-commons. We presented the workshop results to the press and local government, which shut down the aquaculture ponds to conserve the threatened ecosystem. Effective communication to appropriate audiences was essential for transforming research into action. Our approach is promising and can be readily applied to conservation research and advocacy projects worldwide, but should be improved through adaptive management—practitioners must continually build on those elements that work and discard or improve those that fail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号