首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The organic chemical composition of the fine fraction of atmospheric particulate matter in Athens has been studied, in order to establish emission sources. The results of the analyses of the aliphatic fraction indicate that all samples contain n-alkanes ranging from C14 to C32, with C25, C26, C27 and C29 being the more abundant congeners. Fossil fuels biomarkers such as extended tricyclic terpanes (hopanes, steranes) and isoprenoid hydrocarbons (pristane, phytane) were observed in our samples on a daily basis. Source reconciliation was conducted using molecular diagnostic ratios (such as the carbon preference index – CPI). The mean CPI value (1.84) indicates the mixed origin of the Athenian fine particles. The notable presence of an unresolved complex mixture or “hump” of hydrocarbons in our gas chromatograms is indicative of petrogenic hydrocarbon inputs. An approximate measure of this kind of contamination is the ratio of the concentrations of unresolved components to the resolved n-alkanes and other major compounds (U:R). The high U:R value of 25.25 further confirmed the major contribution of fossil fuels. Yet, the percent contribution of leaf wax n-alkanes (25.15%) indicated the parallel contribution of biogenic sources. This work supports the conclusion that vehicular emissions were the major source of aliphatic organic compounds with a smaller contribution of biogenic n-alkanes during the study period in Athens.  相似文献   

3.
In the Beijing area, March and April have the highest frequency of sand-dust weather. Floating dust, blowing sand, and dust storms, primarily from Mongolia, account for 71%, 20%, and 9% of sand-dust weather, respectively. Ambient air monitoring and analysis of recent meteorological data from Beijing sand-dust storm periods revealed that PM10 mass concentrations during dust storm events remained at 1500 μg m−3, which is five to ten times higher than during non-dust storm periods, for fourteen hours on both April 6 and 25, 2000. During the same period, the concentrations in urban areas were comparable to those in suburban areas, while the concentrations of gaseous pollutants, such as SO2, NO x , NO2, and O3, remained at low levels, owing to strong winds. Furthermore, during sand-dust storm periods, aerosols were created that consisted not only of many coarse particles, but also of a large quantity of fine particles. The PM2.5 concentration was approximately 230 μg m−3, accounting for 28% of the total PM10 mass concentration. Crustal elements accounted for 60–70% of the chemical composition of PM2.5, and sulfate and nitrate for much less, unlike the chemical composition of PM2.5 on pollution days, which was primarily composed of sulfates, nitrates, and organic material. Although the very large particle specific surface area provided by dust storms would normally be conducive to heterogeneous reactions, the conversion rate from SO2 to SO4 2− was very low, because the relative humidity, less than 30%, was not high enough.  相似文献   

4.
Oxidation of methanol over V2O5 catalysts supported on anatase TiO2 that were prepared using sol-gel formation and impregnation procedures were investigated. The effects of incorporating Mg in sol-gel to influence the properties of the catalyst were also studied. The process provides an alternative low temperature reaction pathway for reducing emissions of hazardous air pollutant (HAPs) such as methanol and total reduced sulfur compounds (TRS) from pulp and paper mills. The bulk and surface composition of the catalysts were determined by XRD and SEM-EDAX, respectively. The X-ray diffraction patterns of the vanadia–titania catalysts showed mainly the anatase phase of TiO2. Temperature programmed desorption of methanol from the different catalyst showed that the α and β peaks differ significantly with V content and addition of Mg. The combination of gas phase and surface reactions on the V/TiO2 catalysts reduced the amount of ozone required for high degradation of methanol to mainly CO x with small quantities of methyl formate. In the absence of ozone the catalysts showed very low activity. It is hypothesized that the ozone is directly influencing the V4+ and V5+ redox cycle of the catalyst. Oxidation of methanol is influenced by the operation variables and catalyst properties. The results of this study revealed that the V content has significant influence on the catalyst activity, and the optimum vanadia loading of about 6 wt%. Higher turnover frequencies were observed over sol-gel catalysts than with catalysts prepared by the impregnation method.  相似文献   

5.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

6.
The treatment of soils and ground waters polluted by heavy metals is of economical and environmental interest. Reduction of Cr(VI) to the less toxic Cr(III) associated to its precipitation is a potentially useful process for bioremediation. In order to develop ecological processes using micro-organisms, we have compared various sulfate-reducing bacteria for enzymatic reduction of chromate. The best Cr(VI) reductase activity was obtained with Desulfomicrobium norvegicum. Despite morphological changes induced by the presence of chromate, this strain can grow in the presence of up to 500 M Cr(VI) and can decontaminate waters polluted by Cr(VI) when seeded in bioreactors. We have demonstrated the ability of several metalloenzymes (cytochromes c 3 and hydrogenases) to reduce chromate. Biophysical investigations of the chromate/protein interaction in order to get further informations on the mechanism of metal reduction by cytochromes c 3 are under the way.  相似文献   

7.
A new treatment method is developed to degrade 4-chlorophenol (4-cp) and its oxidation intermediates. The experimental results of this research demonstrate that 4-cp and its oxidation intermediates can be decomposed completely by basic oxygen furnace slag (BOF slag) with hydrogen peroxide (H2O2) in an acid solution. The factors that effect the treatment efficiency were studied including initial concentration of 4-cp, pH of the solution, concentration of H2O2 and amount of BOF slag. The BOF slags are final waste materials in the steel making process. The major components of BOF slag are CaO, SiO2, Fe2O3, FeO, MgO and MnO. As the BOF slag in an acid solution, FeO and Fe2O3 can be dissociated to produce ferrous ion and ferric ion. Ferrous ion reacts with hydrogen peroxide to form “Fenton's reagent” which can produce hydroxyl radicals (OH.). Hydroxyl radical possession of high oxidation ability can oxidize organic chemicals effectively. Results show that 100 mg/l of 4-cp is decomposed completely within 30 min by 438.7 g/l BOF slag with 8.2 mM hydrogen peroxide in pH=2.8±0.2 solution. The COD value of the solution is reduced from 290 to 90 mg/l. The factors studied which affect the 4-cp decomposition efficiency were the hydrogen peroxide concentration, BOF slag concentration, pH of the solution and initial concentration of 4-cp. Because large amounts of Fe2O3 and FeO are present in the BOF slag, the BOF slag not only has a high treatment efficiency, but also can be used repeatedly.  相似文献   

8.
Since the US Environmental Protection Agency (US EPA) launched its “green remediation” program and EU member states began to reassess their national regulations for environmental remediation in order to reach a Europe‐wide consensus on policy and standards, the need and interest for sustainable remediation of contaminants from brownfields has grown considerably. Concomitantly, the ability to calculate and assess the suitability as well as the environmental footprints and associated risks of a growing number of remediation techniques has become a priority. The authors quantitatively evaluate the differences between various remediation techniques, and for this purpose, a number of ex situ and in situ remediation techniques are adapted to model 21 remediation scenarios for two contaminated sites in the Gothenburg region of Sweden: the Bohus Varv site on the Göta älv river bank and the Hexion site in Mölndal. A wide range of quantitative results for these models are presented, compared, and analyzed. Based on the results from both projects, it is concluded that: (1) remediation techniques requiring long distance residual transportation have significant footprints, except the transportation of contaminated residuals by train due to Swedish energy production conditions; (2) residual transportation by ship results in much higher SOx, NOx, and particle releases compared to the other alternatives; and (3) residual transporation by truck results in high accident risks. Finally, activities powered by electricity result in a reduced footprint compared to activities powered by fossil fuels, considering Swedish energy production conditions. The authors conducted a cross‐benefit analysis of SiteWiseTM applications which recognizes its potential as a tool for presenting life cycle assessment analyses with appropriate system boundary definitions and an easy inventory analysis process. Results from this tool provide valuable support to decision makers aiming at more sustainable remediation. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

10.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO 3 –N ha–1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that belowg-round respiration per unit biomass and per unit plant N was increased.  相似文献   

11.
The dominating source of particles in urban air is road traffic. In terms of number concentration, its main contribution is within the range of ultrafine particles (Dp < 100 nm). The dispersion conditions, i.e. transport and dilution, of the submicrometer particles are expected to be like for gases and therefore the particle concentrations in a street canyon can be calculated using gaseous pollutants dispersion models. Such processes, like coagulation or condensation, are less important due to the short residence time within the street canyon environment.Two extensive measuring campaigns were conducted in the street Jagtvej in Copenhagen, Denmark. The particle size distributions were measured by a Differential Mobility Analyser (DMA) coupled to a particle counter, providing high time resolution data (1/2 hourly) on a continuous basis. Measurements of NOx, CO and meteorological parameters were also available. The measured particle number concentrations, especially below 100 nm, reveal very similar dependence on the meteorological conditions as the NOx concentrations. This underpins the conclusion that dilution properties are similar for particles and NOx. For particle sizes over 100 nm, somewhat different behaviour is observed. This points toward existence of additional particle sources, not related to traffic emissions within the street canyon. A significant contribution is believed here to be attributed to long-range transport. The total particle emission from traffic, including daily variation and size distribution, has been calculated using the OSPM dispersion model. Results are in accordance with a previous analysis based on statistical modelling.  相似文献   

12.
Partly because of the low bioavailability of metals, the soil cleaning-up using phytoremediation is usually time-consuming. In order to enhance the amount of metals at the plant's disposal, the soil bioaugmentation coupled together with phytoextraction is an emerging technology. In this preliminary work, two agricultural soils which mainly differed in their Cr, Hg and Pb contents (LC, low-contaminated soil; HC, high-contaminated soil) were bioaugmented in laboratory conditions by either bacterial (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas fluorescens or Ralstonia metallidurans) or fungal inocula (Aspergillus niger or Penicillium simplicissimum) and incubated during three weeks. The LC soil pots bioaugmented with A. niger and P. aeruginosa contained higher concentrations of Cr (0.08 and 0.25 mg.kg−1 dw soil) and Pb (0.25 and 0.3 mg.kg−1 dw soil) in the exchangeable fraction F1 (extraction with MgCl2) by comparison with the non-bioaugmented soil where neither Cr nor Pb was detected. Conversely, immobilization of Cr and Pb in the soil were observed with the other microorganisms. The soil bioaugmentation not only modified the metal speciation for the most easily extractable fractions but also modified the distribution of metals in the other fractions, to a lesser extent nevertheless. The difference in microbial concentrations between the bioaugmented or not HC soils reached up to 1.8 log units. Thus the microorganisms that we chose for the soil bioaugmentation were competitive towards the indigenous microflora. The PCA analysis showed close positive relationships between the microorganisms which potentially produced siderophores in the soil and the amount of Cr and Pb in the fraction F1.  相似文献   

13.
Since ground level ozone concentrations in the basin on one day before the occurrence of unusually high air temperature with nocturnal thermal high showed a typical urban type of a maximum ozone concentration at 1300 LST and a minimum at night. However, a maximum ozone concentration under extremely high air temperature of 39.2 °C was detected at 1700 LST or 1800 LST at two environmental monitoring sites, which was 4 or 5 hr delayed from the typical occurrence time, 1300 LST. Its maximum value showed about 50 or 70% increase of the concentration more than the typical maximum value and its concentration gradually decreased until 2100 LST. After 1200 LST until 1800 LST, air temperature was maintained over 35 °C and the high temperature made a great contribution to the increase of O3 for several hours. The deviated occurrence time of a maximum ozone concentration is mainly attributed to meteorological and topographic effects – shifted occurrence time of maximum air temperature, shrunken atmospheric boundary layer depth and wind. While daytime O3 concentration due to photochemical production of O3 from NO2 increased, NO2 concentration decreased, with their reverse respondent patterns each night. A secondary maximum concentration of O3 at 2300 LST or 2400 LST is due to a much shallower depth of nocturnal surface inversion layer with daytime producing more O3 than that of the daytime convective boundary layer, resulting in the increase of ozone concentration, though the reduction of ozone occurred under the reversal process of O3 into NO2.  相似文献   

14.
World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO2, NOx and CO2. The estimated results show that CO2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO2 emissions in 2020.  相似文献   

15.
Measurements of indoor and outdoor PM10, as well as indoor O3 and CO concentrations were conducted and are presented here. These measurements were carried out at an institute building, located in a suburban industrial area in Greece. Both indoor and outdoor PM10 samples were also collected and their elemental composition was identified by ED-XRF analysis. Twenty seven major, minor and trace elements were identified. The measurements took place generally in different periods of institute operation, from June 2004 to February 2005. The indoor PM10 concentrations which were measured during the normal operation period of the institute were found to be many times higher than the respective outdoor PM10 concentrations of the same periods. On the contrary, the indoor PM10 concentrations which were measured during the holiday period were found to be lower than their corresponding outdoor values. Indoor O3 and CO concentrations were found to be in low level. Indoor PM10 concentrations were found to be in a relative good correlation with O3 (r = 0.45) and in high correlation (r = 0.98) with CO concentrations. On average, total elements concentrations were much higher indoors relative to outdoors. Based on above findings we attempted to determine the pollution sources of the indoor environment and to investigate some parameters or chemical processes that affect indoor pollutants’ levels.  相似文献   

16.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

17.
Two years of continuous measurements of SO2deposition fluxes to moorland vegetation are reported. The mean flux of 2.8 ng SO2 m-2 s-1 is regulated predominantly by surface resistance (r c) which, even for wet surfaces, was seldom smaller than 100 s m-1. The control of surface resistance is shown to be regulated by the ratio of NH3SO2 concentrations with an excess of NH3 generating the small surface resistances for SO2. A dynamic surface chemistry model is used to simulate the effects of NH3 on SO2 deposition flux and is able to capture responses to short-term changes in ambient concentrations of SO2, NH3 and meteorological conditions. The coupling between surface resistance and NH3/SO2 concentration ratios shows that the deposition velocity for SO2 is regulated by the regional pollution climate. Recent long-term SO2 flux measurements in a transect over Europe demonstrate the close link between NH3/SO2 concentrations and rc (SO2). The deposition velocity for SO2 is predicted to have increased with time since the 1970s and imply a 40% increase in v d at a site at which the annual mean ambient SO2 concentrations declined from 47 to 3 g m-3 between 1973 and 1998.  相似文献   

18.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

19.
During recent decades heathlands havechanged into grasslands in regions with high atmosphericnitrogen deposition. In regions with intermediatedeposition level (e.g., Denmark) changes have been lesspronounced which may be due to delay or decrease inresponse of the ecosystem. The mor layer (O horizon) mayplay an important role for this delay due to high sinkstrength for N. In this study, the capacity for netNH4 + immobilization and mineralization wasstudied during short- and long-term incubations (2–36 days)of mor samples from Danish dry inland heaths. High short-term capacity for net NH4 + immobilization wasfound to be a general characteristic of Danish heath morlayers both under heather (Calluna vulgaris) andcrowberry (Empetrum nigrum ssp nigrum), the latterdominating late stages in heathland succession. The netNH4 + immobilization was higher under youngcompared to old or dead vegetation, and higher on lessnutrient poor soils than on extremely nutrient poor soils.The addition of N, P and C stimulated CO2 productionand net NH4 + immobilization, but not net Nmineralization. The immobilization of 15NH4 +caused release of dissolved organic N, increased N anddecreased C/N ratio in the microbial biomass, and indicatedgrowth of microorganisms with other metabolic abilitiesthan the indigenous population. No evidence was obtained ofstabilization of immobilized 15NH4 + intosoil organic matter during the experiment. On background ofthe results and current knowledge it was concluded that therecognition of the high capacity for net NH4 +immobilization in mor layers does not allow for a raiseof critical loads for N for northern dry inland heaths.  相似文献   

20.
PM2.5 and PM10 samples for megalopolis atmospheric particles were collected at Shinjuku, Tokyo in December 1998–January 1999 and August 1999, for two weeks both in winter and summer, with a 24 hr sampling interval. Sampling of PM2.5 and PM10 in diesel exhaust particles (DEP) was carried out using an automobile exhaust testing system, with a diesel truck placed on a chassis dynamometer. Sampling conditions included idling, constant speed of 40 km hr-1, M-15 test pattern and 60%-revolution/40%-load of maximum power. Mass spectrums of organic compounds adhering to the surface of the PM2.5 and PM10 samples were analyzed by laser desorption time-of-flight mass spectrometry (LD-TOFMS, analytical mass range: m/z 1–m/z 380 000). LD-TOFMS analysis of those samples revealed consistently the detection of low-mass organic compounds up to m/z 800. For the megalopolis atmospheric particles, the mass spectrum pattern of wintertime samples was almost the same as that of the summertime samples for both PM2.5 and PM10. The major peak was m/z 177, and the minor peaks were m/z 84, 94, 101, 163, 189 and 235. The mass spectrum pattern of DEP was the same for all samples under all test conditions. The major peak was m/z 101, and other detected peaks were small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号