首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
碱渣对Cd2+的吸附特性研究   总被引:2,自引:1,他引:1  
研究了碱渣对溶液中Cd2+的吸附特征。实验结果表明,碱渣对Cd2+的吸附量随温度升高而降低,随Cd2+初始质量浓度增加而增大,随体系pH升高而增大。当体系pH〈7.52时,表面吸附起主导作用,吸附作用力主要为偶极间力和氢键力,碱渣对Cd2+的吸附热力学可用Freundlich等温吸附方程较好地描述;而当吸附体系pH〉8.00时,吸附作用力主要为化学键力,吸附过程可用Langmuir等温吸附方程较好地描述。当体系pH=7.00时,碱渣对Cd2+的吸附动力学用二级动力学方程拟合效果最佳;当体系pH为8.00和9.01时,用Langmuir动力学方程拟合的效果最佳。  相似文献   

2.
研究了碱渣对溶液中Cd2+的吸附特征。实验结果表明,碱渣对Cd2+的吸附量随温度升高而降低,随Cd2+初始质量浓度增加而增大,随体系pH升高而增大。当体系pH<7.52时,表面吸附起主导作用,吸附作用力主要为偶极间力和氢键力,碱渣对Cd2+的吸附热力学可用Freundlich等温吸附方程较好地描述;而当吸附体系pH>8.00时,吸附作用力主要为化学键力,吸附过程可用Langmuir等温吸附方程较好地描述。当体系pH=7.00时,碱渣对Cd2+的吸附动力学用二级动力学方程拟合效果最佳;当体系pH为8.00和9.01时,用Langmuir动力学方程拟合的效果最佳。  相似文献   

3.
研究了脂肪磺酸基阳离子交换树脂(简称树脂)对Cr3+的吸附和解吸性能。在溶液初始Cr3+质量浓度为250mg/L、吸附温度为25℃、溶液pH为5的条件下,树脂对Cr3+的吸附量最大。Cr3+质量浓度在实验范围内,等温吸附过程均符合Langmuir和Freundlich方程,最大吸附量为18.6208mg/g。树脂对Cr3+的吸附在吸附时间为180min时趋于平衡,且吸附为液膜扩散控制。随吸附温度的升高(10~55℃),树脂对Cr3+的吸附量略有增加。用质量分数为5%的HCl溶液可将吸附在树脂上的Cr3+解吸,解吸率近100%,且重复5次吸附和解吸过程,树脂对Cr3+的吸附量基本保持不变。  相似文献   

4.
脂肪磺酸基阳离子交换树脂对Cr3+的吸附和解吸性能   总被引:1,自引:1,他引:0  
研究了脂肪磺酸基阳离子交换树脂(简称树脂)对Cr3+的吸附和解吸性能。在溶液初始Cr3+质量浓度为250m∥L、吸附温度为25℃、溶液pH为5的条件下,树脂对Cr3+的吸附量最大。Cr3+质量浓度在实验范围内,等温吸附过程均符合Langmuir和Freundlich方程,最大吸附量为18.6208mg/g。树脂对Cr3+的吸附在吸附时间为180min时趋于平衡,且吸附为液膜扩散控制。随吸附温度的升高(10~55℃),树脂对Cr3+的吸附量略有增加。用质量分数为5%的HCl溶液可将吸附在树脂上的Cr3+解吸,解吸率近100%,且重复5次吸附和解吸过程,树脂对Cr3+的吸附量基本保持不变。  相似文献   

5.
以粉煤灰为原料,采用碱熔融-水热法制备了3种沸石分子筛,运用XRD、XRF、SEM和BET等手段进行了表征,并将分子筛用于吸附溶液中的氨氮,考察了影响氨氮吸附效果的主要因素、氨氮等温吸附特征和吸附动力学特征。结果表明:分子筛B(Na20.8Al23Si36O117·7.69 H2O)对氨氮的吸附效果最佳,在初始氨氮质量浓度100 mg/L、分子筛B加入量2 g/L、初始溶液pH 7、吸附温度25℃、转速150 r/min的条件下,吸附60 min后,氨氮吸附量和去除率分别为40.61 mg/g和90%;4种阳离子对氨氮吸附效果的影响顺序依次为K+>Ca2+>Na+>Mg2+;分子筛B对氨氮的吸附为单分子层吸附,具有化学吸附的特征;分子筛B吸附氨氮的的最佳工艺条件为初始溶液pH 7、吸附温度45℃、初始氨氮质量浓度40 mg/L,在该条件下,氨氮去除率为93%。  相似文献   

6.
研究了强碱性阴离子交换树脂(简称树脂)对苦味酸的吸附与解吸性能,探讨了吸附的热力学和动力学特性以及吸附机理.实验结果表明:树脂对苦味酸的吸附量随吸附温度升高而增大;溶液pH为2.7 ~12.0时树脂的苦味酸吸附量最大,稳定在120 mg/g以上;树脂对苦味酸的等温吸附规律符合Freundlich模型,相关系数大于0.9...  相似文献   

7.
王晓峰  陈晨  宋瑶  杨璟轶  赵杰  李薇 《化工环保》2019,39(2):184-189
采用内酯型槐糖脂(SL50)修复石油污染土壤。通过单因子实验与正交实验,考察了槐糖脂溶液质量浓度、振荡时间、反应体系初始pH、NaCl加入量以及固液比(土壤质量与表面活性剂溶液体积之比)对污染土壤石油烃洗脱率的影响。单因子模型回归分析结果表明,参数变量均符合二次拟合模型,槐糖脂溶液质量浓度、反应体系初始pH以及NaCl加入量的二次模型拟合效果较好。正交实验结果表明,槐糖脂溶液质量浓度和反应体系初始pH是该实验的敏感性因子,最优洗脱条件为槐糖脂溶液质量浓度40 mg/L、反应体系初始pH 9、NaCl加入量6%(w)。  相似文献   

8.
豆渣对水中Cd2+和Zn2+的吸附   总被引:1,自引:0,他引:1  
研究了新型生物吸附剂豆渣对水中Cd^2+和Zn^2+的吸附机制和吸附能力;分析了吸附时间、溶液pH、豆渣质量浓度和重金属离子质量浓度对重金属离子去除效果的影响。豆渣对Cd^2+和Zn^2+的吸附过程符合Langmuir等温吸附方程。在Cd^2+溶液和Zn^2+溶液的pH分别为6.0和7.0、质量浓度为50mg/L、豆渣质量浓度为10.0g/L的条件下,吸附12h,Cd^2+和Zn^2+的去除率分别为96.O%和89.4%。通过Langmuir吸附等温线模拟,得出豆渣对Cd^2+和Zn^2+的最大吸附量分别为19.61mg/g和11.11mg/g。  相似文献   

9.
研究了皂土对CuSO_4的吸附性能,考察了溶液初始pH、无机电解质NaCl、MgCl_2和AlCl_3及乙二胺四乙酸(EDTA)和柠檬酸等因素对皂土吸附量的影响。实验结果表明:皂土对CuSO_4有很强的吸附能力;其吸附动力学曲线和吸附等温线分别符合准二级反应速率方程和Langmuir方程;饱和吸附量达29.85 mg/g;随溶液初始pH增大,吸附量增大;无机电解质NaCl、MgCl_2和AlCl_3以及EDTA和柠檬酸均可以抑制CuSO_4在皂土上的吸附。  相似文献   

10.
采用聚乙烯醇(PVA)、聚乙二醇(PEG)对海藻酸钠(SA)进行改性,制备了一种新型高效SA-PVA-PEG复合膜。研究了该复合膜对Cu2+的吸附效果。用IR和SEM等手段对复合膜进行了表征。表征结果显示,复合膜内部存在孔状结构,有利于吸附Cu2+。实验结果表明:在初始Cu2+质量浓度50 mg/L、复合膜加入量1 g/L、废水pH=5、吸附温度30℃、吸附时间60 min的最佳条件下,吸附率最高可达90.1%,吸附量达25.3 mg/g;复合膜吸附Cu2+的动力学过程可用二级动力学方程和Elovice方程进行拟合,吸附过程符合Langmuir单层吸附理论。采用浓度为1 mol/L的HCl溶液对吸附后的复合膜进行解吸,当解吸时间为2 min时,解吸率可达80.0%。  相似文献   

11.
研究了NDA-66新型超高交联树脂对邻苯二甲酸的吸附及脱附性能。实验结果表明:静态吸附过程中,在初始邻苯二甲酸质量浓度1 000 mg/L、溶液pH=2.0、吸附时间600 min的条件下,吸附量可达190 mg/g;动态吸附过程中,处理11吸附床层体积倍数(BV)的邻苯二甲酸溶液,当溶液流量为1.5 BV/h时,吸附率可达100%;动态脱附过程中,在w(NaOH)= 6%、脱附温度328 K的最佳脱附条件下,脱附率可达99%以上。  相似文献   

12.
通过甲醛与茶渣中多酚类组分的反应制备了多酚原位固化茶渣吸附材料,并将其用于对水中Cr(Ⅵ)的吸附。表征结果显示:茶渣多酚的原位固化提高了其热稳定性,同时对茶渣粒料起到了修补增强作用。固化茶渣对Cr(Ⅵ)的吸附量随溶液pH的减小而增大。在吸附温度303 K、初始Cr(Ⅵ)质量浓度60 mg/L、吸附剂投加量1.0 g/L、吸附时间300 min、溶液pH为2的条件下,固化茶渣对Cr(Ⅵ)的吸附量为56.56 mg/g,去除率达94.3%。固化茶渣对Cr(Ⅵ)的吸附符合Langmuir等温吸附模型和准二级动力学方程,吸附是一个自发的、吸热过程,303,318,333 K下的Langmuir饱和吸附量分别为83.26,107.64,129.20 mg/g。  相似文献   

13.
采用低温等离子体技术将甲基丙烯酸缩水甘油酯(GMA)接枝在聚丙烯(PP)纤维表面,再用二乙烯三胺(DETA)胺化,制得PP-g-GMA-DETA螯合纤维,并应用于含铅模拟废水的处理。考察了吸附时间、溶液pH和初始Pb2+质量浓度对吸附量的影响。实验结果表明:PP-g-GMA-DETA螯合纤维对Pb2+的吸附速率很快,15 min时基本达到平衡吸附量,约为24.83 mg/g;随溶液pH的增加吸附量先迅速升高后保持平稳,在溶液pH为5.0时达到25.37 mg/g;随初始 Pb2+质量浓度的增加,吸附量迅速上升,当初始Pb2+质量浓度达到60 mg/L后,吸附量增长缓慢,最终保持吸附平衡。PP-g-GMA-DETA螯合纤维对Pb2+的吸附符合Langmuir等温吸附模型,是典型的单分子层吸附,饱和吸附量为31.40 mg/g。  相似文献   

14.
以磷石膏废渣为原料制备硫酸钙晶须,考察了硫酸钙晶须对模拟含磷废水中磷的去除效果,分析了初始废水pH、初始磷质量浓度、硫酸钙晶须加入量对磷吸附效果的影响,研究了硫酸钙晶须对磷的吸附等温线,同时对吸附机理进行了探讨。实验结果表明:硫酸钙晶须在碱性条件下对磷的去除率较酸性条件下高,且初始废水pH为10时去除效果最佳;最佳硫酸钙晶须加入量为0.03 g/mg(以磷计);在初始废水pH为10、初始磷质量浓度为50 mg/L、硫酸钙晶须加入量为1.5 g/L的条件下,于25 ℃下反应1 h,磷的去除率达到99.16%,上清液TP为0.419 mg/L;与Freundlich模型相比,Langmuir等温吸附模型更适合描述硫酸钙晶须对磷的吸附过程,采用该模型拟合得出25 ℃下磷的饱和吸附量为140.4 mg/g。  相似文献   

15.
采用溶剂热法合成了金属有机骨架材料Cu_3(BTC)_2(BTC为均苯三甲酸根),并对其进行了XRD表征。考察了刚果红初始质量浓度、溶液pH及Na~+浓度等工艺参数对Cu_3(BTC)_2吸附刚果红效果的影响,对其吸附热力学和动力学进行了研究。结果表明:刚果红初始质量浓度增大,吸附量增大,脱色率逐渐降低;酸性条件下的吸附性能好于碱性条件;Na~+对吸附具有抑制作用,Na~+的浓度越高,抑制作用越明显;Cu_3(BTC)_2对刚果红的吸附符合Langmuir吸附等温模型和准二级动力模型。  相似文献   

16.
The adsorption of rhodamine-B and acid violet by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose and pH. The adsorption followed both Langmuir and Freundlich isotherms. The adsorption capacity was found to be 2.56 mg and 8.06 mg dye per g of the adsorbent for rhodamine-B and acid violet, respectively. Adsorption of dyes followed first order rate kinetics. Acidic pH was favorable for the adsorption of acid violet and alkaline pH was favorable to rhodamine-B. Desorption studies showed that alkaline pH was favorable for the desorption of acid violet and acidic pH was favorable for the desorption of rhodamine-B.  相似文献   

17.
以铅离子为模板离子、乙二醇二甲基丙烯酸酯和偶氮二异丁腈为交联剂和引发剂、稀盐酸为洗脱剂,采用微波辅助反相乳液悬浮聚合法,制备了磁性离子印迹聚合物(MIIP),通过SEM、FTIR、XRD和BET技术对其进行了表征,并将其用于水中Pb(Ⅱ)的吸附.在初始质量浓度60 mg/L、溶液pH 6、吸附温度303 K、吸附时间6...  相似文献   

18.
离子交换树脂处理三乙胺废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用离子交换树脂对废水中三乙胺进行吸附。探讨了静态及动态吸附三乙胺的影响因素,考察了树脂的脱附条件及其吸附稳定性。实验结果表明:RX01型树脂对三乙胺的吸附性能优于HD-81型和D155型树脂;在三乙胺初始质量浓度为1 500 mg/L、初始pH为11.5、吸附时间为2 h、吸附温度为298 K的静态吸附条件下,三乙胺去除率为96.3%,饱和吸附量为145 mg/g,等浓度条件下阳离子影响的大小顺序为Ca~(2+)Mg~(2+)K~(+)Na~(+);当三乙胺初始质量浓度为1 500 mg/L、废水流量为60 BV/h、动态吸附柱高径比为5.37时,穿透体积为70 BV,出水三乙胺质量浓度小于3 mg/L,三乙胺去除率高达99.5%;以2 mol/L的HCl溶液为脱附剂,脱附剂流量为1 BV/h、出水体积为4 BV时,三乙胺的脱附率达94.8%;在最优动态吸附-脱附条件下重复使用10次,树脂性能稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号