首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration of Dense, Non-Aqueous Phase Liquid (DNAPL) and dissolved phase contamination through a fractured heterogeneous porous medium has been investigated through the use of a multiphase compositional model. The sensitivity of the timescales of migration and the distribution of contaminant in the subsurface to the mean permeability, the variance of the permeability, and the degree of fracturing of the domain were examined. It was found that increasing the mean permeability of the domain allowed the DNAPL to penetrate deeper into the subsurface, while decreasing the mean permeability caused the DNAPL to pool at shallower depths. The presence of fractures within the system was found to control the infiltration only in the most fractured domain. Moment analysis of the nonwetting phase showed that large-scale movement had ceased after approximately 9 years (maximum duration of the source-on condition was approximately 4.5 years). This tended to be due to a redistribution of the DNAPL towards a residual configuration, as was evidenced by the gradual trending of average nonwetting phase saturations within the domain to a static value. The dissolved phase plume was found to migrate at essentially the same rate as the nonwetting phase, due to the reduced relative permeability of lenses containing DNAPL, and due to diffusive losses of mass to the matrix of fractured clay and silty-clay lenses. Some exceptions to this were found when the DNAPL could not overcome the displacement pressure of a lens, and could not by-pass the lens due to the lack of available driving force after the source had been shut off.  相似文献   

2.
3.
In preparation for a field experiment where a NAPL will be injected into a fractured sandstone aquifer, a 2D invasion percolation model of DNAPL migration in a single horizontal fracture with varying aperture has been developed. This simulation investigated the effect of spatially correlated fracture aperture fields on pressure-saturation relationships as a function of variable aperture mean, standard deviation, and spatial correlation statistics under hydrostatic conditions. Results from spatially correlated variable aperture fields can be significantly different from random fields. Longer ranges decreased entry pressures and higher standard deviations decreased nonwetting phase saturations. Mean aperture is the major control on displacement pressure, entry pressure and the form of the pressure-saturation curve. Simulation results using statistical parameters for a variable aperture natural sandstone fracture as described by Yeo et al. [International Journal of Rock Mechanics and Mining Sciences 35 (1998) 1051] closely resemble a Brooks-Corey pressure-saturation function, and exhibit a distinct entry pressure followed by a rapid increase in nonwetting phase saturation. Graphical estimates of entry pressure provide a good approximation of the critical aperture controlling the formation of a continuous nonwetting phase pathway in a variable aperture fracture. Consequently, we show that multiphase flow concepts developed for porous media can successfully be applied to variable aperture fractures. Entry pressure correlates well to the mean aperture in these simulations when using a Gaussian distribution of fracture aperture. Interpreted aperture distributions from NAPL injection experiments do not fit the true distribution well at low nonwetting phase saturations, but do at higher saturations above the entry pressure. Consequently, true, mechanical aperture variation within a fracture plane cannot be determined from NAPL injection experiments either in the field or laboratory.  相似文献   

4.
Macro-scale simulations often play an important role in the assessment and remediation of contamination by dense non-aqueous phase liquids (DNAPLs) in the subsurface. Effective parameters for the macro scale are required for these simulations in order to avoid a detailed discretisation of the geological structures. Starting from the observed influence of heterogeneities on multiphase flow processes at the macro scale, we present an upscaling procedure from the local to the macro scale for the derivation of constitutive relationships for multiphase flow processes. The approach is based on the assumption of an equilibrium of (capillary) forces, which allows the application of a percolation model. This results in saturation distributions for different capillary pressures. Averaging these distributions gives rise to a macroscopic capillary pressure-saturation relationship. For the saturation distribution, relative permeabilities and effective conductivities are computed depending on the structure and the flow direction. These are averaged with the help of the renormalisation method. The evolving relative permeability-saturation relationship for the macro scale shows a saturation-dependent anisotropy and pronounced residual saturations of the nonwetting phase (which were not assumed for the local scale). The anisotropy reflects the underlying structure of the considered system that needs not to be known in detail.  相似文献   

5.
A fiber optic transflection dip probe (FOTDP) system was developed for in situ and real-time monitoring of the transport of gas phase ozone in unsaturated porous media. A unique property of this system is the employment of a dip probe, which is inserted within the porous media. At the probe's tip, incoming light interacts with gas phase ozone and is partially reflected back into the probe by a mirror attached to the tip. Calibration of the FOTDP system was successfully carried out with various ozone concentrations using a column packed with glass beads. The ozone breakthrough curves (BTCs) were obtained by converting normalized UV intensities into gas phase ozone concentrations. The FOTDP system worked well for in situ monitoring of gas phase ozone using a column packed with sand under various water saturations in the presence of SOM and reflected the ideal transport phenomena of gas phase ozone for various flow rates.  相似文献   

6.
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.  相似文献   

7.
Controlled emplacement of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) particles at high particle concentration (1-10 g/L) is needed for effective in situ subsurface remediation using NZVI. Deep bed filtration theory cannot be used to estimate the transport and deposition of concentrated polyelectrolyte-modified NZVI dispersions (>0.03 g/L) because particles agglomerate during transport which violates a fundamental assumption of the theory. Here we develop two empirical correlations for estimating the deposition and transport of concentrated polyelectrolyte-modified NZVI dispersions in saturated porous media when NZVI agglomeration in porous media is assumed to reach steady state quickly. The first correlation determines the apparent stable agglomerate size formed during NZVI transport in porous media for a fixed hydrogeochemical condition. The second correlation estimates the attachment efficiency (sticking coefficient) of the stable agglomerates. Both correlations are described using dimensionless numbers derived from parameters affecting deposition and agglomeration in porous media. The exponents for the dimensionless numbers are determined from statistical analysis of breakthrough data for polyelectrolyte-modified NZVI dispersions collected in laboratory scale column experiments for a range of ionic strength (1, 10, and 50mM Na(+) and 0.25, 1, and 1.25 mM Ca(2+)), approach velocity (0.8 to 55 × 10(-4)m/s), average collector sizes (d(50)=99 μm, 300 μm, and 880 μm), and polyelectrolyte surface modifier properties. Attachment efficiency depended on approach velocity and was inversely related to collector size, which is contrary to that predicted from classic filtration models. High ionic strength, the presence of divalent cations, lower extended adsorbed polyelectrolyte layer thickness, decreased approach velocity, and a larger collector size promoted NZVI agglomeration and deposition and thus limited its mobility in porous media. These effects are captured quantitatively in the two correlations developed. The application and limitations of using the correlations for preliminary design of in situ NZVI emplacement strategies is discussed.  相似文献   

8.
Computational simulations of two-phase flow in porous media are used to investigate the feasibility of replacing a porous medium containing heterogeneities with an equivalent homogeneous medium. Simulations are performed for the case of infiltration of a dense nonaqueous phase liquid (DNAPL) in a water-saturated, heterogeneous porous medium. For two specific porous media, with periodic and rather simple heterogeneity patterns, the existence of a representative elementary volume (REV) is studied. Upscaled intrinsic permeabilities and upscaled nonlinear constitutive relationships for two-phase flow systems are numerically calculated and the effects of heterogeneities are evaluated. Upscaled capillary pressure-saturation curves for drainage are found to be distinctly different from the lower-scale curves for individual regions of heterogeneity. Irreducible water saturation for the homogenized medium is found to be much larger than the corresponding lower-scale values. Numerical simulations for both heterogeneous and homogeneous representations of the considered porous media are carried out. Although the homogenized model simulates the spreading behavior of DNAPL reasonably well, it still fails to match completely the results form the heterogeneous simulations. This seems to be due, in part, to the nonlinearities inherent to multiphase flow systems. Although we have focussed on a periodic heterogeneous medium in this study, our methodology is applicable to other forms of heterogeneous media. In particular, the procedure for identification of a REV, and associated upscaled constitutive relations, can be used for randomly heterogeneous or layered media as well.  相似文献   

9.
Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam injection technology is presented, where a mixture of steam and air was injected. In two-dimensional experiments with unsaturated porous medium contaminated with nonaqueous phase liquids, it was demonstrated how injection of pure steam lead to severe downward migration. Similar experiments, where steam and air were injected simultaneously, resulted in practically no downward migration and still rapid cleanup was achieved. The processes responsible for the prevention of downward migration when injecting steam-air mixtures were analyzed using a nonisothermal multiphase flow and transport model. Hereby, three mechanisms were identified and it was demonstrated how the effectiveness of these mechanisms depended on the air-to-steam mixing ratio.  相似文献   

10.
Pore-scale modeling of dispersion in disordered porous media   总被引:2,自引:0,他引:2  
We employ a direct pore-level model of incompressible flow that uses the modified moving particle semi-implicit (MMPS) method. The model is capable of simulating both unsteady- and steady-state flow directly in microtomography images of naturally-occurring porous media. We further develop this model to simulate solute transport in disordered porous media. The governing equations of flow and transport at the pore level, i.e., Navier-Stokes and convection-diffusion, are solved directly in the pore space mapped by microtomography techniques. Three naturally-occurring sandstones are studied in this work. We verify the accuracy of the model by comparing the computed longitudinal dispersion coefficients against the experimental data for a wide range of Peclet numbers, i.e., 5×10(-2)相似文献   

11.
An ordered hierarchical meso/macroporous monoclinic bismuth vanadate (BiVO4) particle was fabricated for the first time by a simple two-step melamine template hydrothermal method followed by calcination. The physiochemical parameters of as-prepared porous materials were characterized by means of X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Raman, Barrett–Emmett–Teller, and UV–vis techniques. The nitrogen adsorption–desorption measurement and pore size distribution curve suggest that meso/macropores exist in these hierarchical microarchitectures. Further, it is found that melamine plays a significant role in the formation of porous BiVO4 particles, and when a known amount of melamine was added, the surface area and pore size of such porous BiVO4 particles were increased. The photocatalytic activities of the as-prepared hierarchical BiVO4 samples were measured for the photodegradation of Congo red aqueous dye solution under visible light irradiation. Surprisingly, the porous BiVO4 particles showed outstanding photocatalytic activities than polycrystalline BiVO4 sample. The possible enhancement of such catalytic performance has also been further discussed.  相似文献   

12.
A methodology to study the trichloroethylene (TCE) and dodecane removal in porous media by surfactant foams (SF) was presented by using etched-glass micromodels. The purpose of this work was to systematically evaluate the impact of various physicochemical factors such as gas fraction (GF), surfactant concentration, pore structure and nonaqueous phase liquid (NAPL) types on NAPL removal during SF flooding. The TCE displacement by SF was dependent on the gas fraction of SF. Low GFs (50% and 66%) were more efficient for TCE removal and sweep efficiencies than a high GF (85%). An increase in TCE removal was observed with increasing surfactant concentration at a fixed GF. TCE removal by SF flooding appeared to be dependent more to the value of Capillary number rather than to the concentration of surfactant solution. The effect of the pore heterogeneity was evaluated by employing two different types of micromodels. The Capillary number is an important parameter in the determination of sweep efficiency or gas saturation of SF in a nonhomogeneous porous medium. However, the TCE removal from a nonhomogeneous porous medium may not be associated with sweep efficiency. The initial configuration of residual TCE blobs in a nonhomogeneous porous medium would also be influential in displacing TCE. Sweep efficiencies and pressure responses of two NAPL systems (TCE and dodecane) were monitored to evaluate foam stability when the foam contacts the NAPLs. Stable foam contacting with TCE is implied, while it appears that dodecane cause the SF to collapse. All results indicate that the Capillary number (a ratio of viscous forces to capillary forces) is the most important parameter for TCE removal by SF flooding. Micromodel visualizations of water, surfactant and SF floods were showed and also discussed.  相似文献   

13.
The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional method, suggesting that the diffusometry-based NMR well logging with gradient coils is applicable to the in-situ permeability measurement of strata. The present study demonstrated that X-ray CT using synchrotron radiation is a powerful tool for obtaining 3-D pore structure images without the beam-hardening artifacts inevitable in conventional CT using X-ray tubes.  相似文献   

14.
Contamination of the subsurface by nonaqueous phase liquids (NAPLs) is a widespread problem. To investigate the behavior of a nonspreading, dense NAPL (DNAPL) in the vadose zone, we conducted perchloroethylene (PCE) infiltration experiments in nominally 1- and 2-dimensional (D), stratified porous media. In addition, the usefulness and limitations of a multifluid flow simulator to describe PCE infiltration and redistribution under the experimental conditions were tested. The physical simulations were conducted in a column (1-D) and a flow container (2-D) which were packed with two distinct layers of coarse-grained sand and a fine-grained sand layer in between. Volumetric water and PCE contents were determined with a fully automated dual-energy gamma radiation system. While migrating through the drier parts of the coarse-grained sand layers, PCE appeared to wet the water–air interface rather than displacing any water. In the wetter parts of the porous medium, PCE displaced water and behaved as a true nonwetting fluid. PCE showed a limited response to gradients in capillary pressure and rather high values for the volumetric PCE content were measured in the fine-grained sand layers. This was attributed to the nonspreading nature of PCE. The multifluid flow simulator appeared to predict the initial PCE movement in the vadose zone reasonably well. However, the model was not capable of predicting the final amounts of PCE retained in either the unsaturated or saturated part of the flow domain, mainly because the simulator does not consider the nonspreading flow behavior of NAPLs.  相似文献   

15.
We develop a method to compute interfacial areas from three-dimensional digital representations of multiphase systems. We approximate the interfaces with the isosurface generated by the standard marching-cube algorithm from the discrete phase distribution. We apply this approach to two-fluid pore-scale simulations by (1) simulating a random packing of spheres that obeys the grain-size distribution and porosity of an experimental porous medium system, and (2) using a previously developed pore-morphology-based model in order to predict the phase distribution for a water-wet porous medium that undergoes primary drainage. The predicted primary drainage curve and interfacial areas are in good agreement with the experimental values reported in the literature, where interfacial areas were measured using interfacial tracers. The energy dissipation during Haines jumps is significant: thus, the mechanical work done on the system is not completely converted into surface energy, and interfacial areas may not be deduced from the primary drainage curve.  相似文献   

16.
To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.  相似文献   

17.
Modeling field-scale cosolvent flooding for DNAPL source zone remediation   总被引:2,自引:1,他引:1  
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.  相似文献   

18.
A fixed-volume release of 1,2-DCE, tracked in space and time with a light transmission/image analysis system, provided a data set for the infiltration, redistribution, and immobilisation of a dense non-aqueous phase liquid (DNAPL) in a heterogeneous porous medium. The two-dimensional bench scale flow cell was packed with a spatially correlated, random heterogeneous distribution of six sand types. In order to provide the necessary modelling parameters, detailed constitutive relationships were measured at the local scale for the six sands. These experiments revealed that nonwetting phase (NWP) relative permeability-saturation (k(rN)-S(W)) relationships are strongly correlated to sand type. Trends in the best-fit k(rN)-S(W) parameters reflected a positive correlation between mean grain diameter and the maximum NWP relative permeability, k(rN)(max). Multiphase flow simulations of the bench scale experiment best reproduced the experimental observations, producing excellent matches in both time and space, when the measured, correlated local scale k(rN)-S(W) relationships were employed.  相似文献   

19.
Five locally-calibrated light transmission visualization (LTV) methods were tested to quantify nonaqueous phase liquid (NAPL) mass and mass reduction in porous media. Tetrachloroethylene (PCE) was released into a two-dimensional laboratory flow chamber packed with water-saturated sand which was then flushed with a surfactant solution (2% Tween 80) until all of the PCE had been dissolved. In all the LTV methods employed here, the water phase was dyed, rather than the more common approach of dyeing the NAPL phase, such that the light adsorption characteristics of NAPL did not change as dissolution progressed. Also, none of the methods used here required the use of external calibration chambers. The five visualization approaches evaluated included three methods developed from previously published models, a binary method, and a novel multiple wavelength method that has the advantage of not requiring any assumptions about the intra-pore interface structure between the various phases (sand/water/NAPL). The new multiple wavelength method is also expected to be applicable to any translucent porous media containing two immiscible fluids (e.g., water-air, water-NAPL). Results from the sand-water-PCE system evaluated here showed that the model that assumes wetting media of uniform pore size (Model C of Niemet and Selker, 2001) and the multiple wavelength model with no interface structure assumptions were able to accurately quantify PCE mass reduction during surfactant flushing. The average mass recoveries from these two imaging methods were greater than 95% for domain-average NAPL saturations of approximately 2.6x10(-2), and were approximately 90% during seven cycles of surfactant flushing that sequentially reduced the average NAPL saturation to 7.5x10(-4).  相似文献   

20.
脱硝催化剂孔结构及其脱硝特性的研究   总被引:2,自引:0,他引:2  
选择性催化还原脱硝技术(SCR)所采用的催化剂多数为多孔介质,其内部孔隙有助于提高催化剂的反应活性。文中采用浸渍负载法,通过改变制备温度制备出不同孔结构的催化剂样品,采用N2吸附法对其孔结构进行测定和分析,并对不同孔结构的催化剂样品进行了脱硝实验。研究表明:煅烧及干燥温度对催化剂孔结构有很大的影响,比表面积越大,其催化剂内的孔分布宽度越窄,平均孔径越小;在活性温度范围(360~390℃)内,脱硝过程中主要是属于化学反应过程控制,脱硝效果随着比表面积的增大而增强;在非活性温度范围内,脱硝过程同时受到气体扩散过程及化学反应过程控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号