首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Spring distributions of some numerically dominant copepods reflect associations with two distinct water masses separated along the 80- to 100-m isobaths. Seaward of this middle shelf front, the oceanic Bering Sea hosts populations of Calanus cristatus, C. plumchrus, and Eucalanus bungii bungii; Metridia pacifica, Oithona similis, and Pseudocalanus spp. are also present. The large oceanic species are much less abundant in waters shallower than 80 m where the community is seasonally dominated by smaller copepods, O. similis, Acartia longiremis, and Pseudocalanus spp. Experimental and field-derived estimates of carbon ingestion indicate that the oceanic/outer shelf copepods can occasionally graze the equivalent of the daily plant production and probably routinely remove 20–30% of the primary productivity. Conversely, stocks of middle shelf copepods rarely ingest more than 5% of the plant carbon productivity. During 45 d between mid April to late May, 1979, approximately three times more organic matter was ingested m-2 by the outer shelf/oceanic copepod community than by middle shelf species. This imbalance in cross-shelf grazing permits middle shelf phytoplankton stocks to grow rapidly to bloom proportions, and to sink ungrazed to the seabed. Over the outer shelf and particularly along the shelf break, a much closer coupling to phytoplankton supports a large biomass of oceanic grazers. Here, copepod stocks approaching 45 g dry wt m-2 occur in late spring as a narrow band at the shelf break.Supported by National Science Foundation Grant DPP 76-23340Contribution no. 485, Institute of Marine Science, University of Alaska, Fairbanks  相似文献   

2.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

3.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

4.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

5.
The epibenthic megafauna of the high-Arctic Northeast Greenland shelf was investigated by means of seafloor photography and Agassiz trawl catches. At 54 stations in water depths between 40 and 770 m, sequences of color slides, each depicting about 1 m2 of the seafloor, were obtained along photographic transects of about 100 to 600 m length. The photographs were quantitatively analyzed for abundance of epibenthic organisms identified by comparison with specimens collected from trawl catches. Megabenthic biomass was estimated by multiplying density values with averge body mass figures. For five dominant brittle star species, the population oxygen uptake and, thus, organic carbon mineralization potential were approximated by applying individual respiration rates of average-sized specimens to density figures. Multivariate analyses of the megabenthic species distribution revealed a distinct depth zonation. Shallow shelf banks (<150 m), characterized by coarse sediments, many stones and boulders as well as negative bottom water temperatures, housed a rich epifauna (30 to 340 ind m–2, 1.8 to 10.5 g AFDW m–2), strongly dominated (80 to 98% by numbers) by the brittle stars Ophiocten sericeum and Ophiura robusta. The oxygen uptake by brittle stars ranged from 0.4 to 95 mol O2 m–2 h–1 (i.e., assuming a respiratory quotient of 0.8, an organic carbon mineralization of 0.1 to 21.9 mg C m–2 d–1). At the bank flanks sloping to the shelf troughs (100 to 580 m), finer sediments prevailed, stones were rare, and bottom water temperatures were positive due to the inflow of Atlantic water. Compared to bank sites, total epibenthic abundances as well as carbon mineralization by brittle stars were roughly ten times and total biomass about four times smaller. In deep shelf depressions as well as at the continental slope (200 to 770 m), stones were completely lacking, and sediments very fine. Epibenthic standing stock and carbon mineralization were one to two orders of magnitude lower than on the banks. The estimation of brittle star oxygen uptake indicates that a considerable portion of the organic carbon produced in the polynya and partitioned to the benthos may be remineralized by epibenthic bank assemblages.  相似文献   

6.
The distribution of total dry weight of zooplankton, copepod numbers and ichthyoplankton across the outer continental shelf in the central Great Barrier Reef was examined at bi-weekly intervals for three months over summer of 1983. Copepods were sampled (236 m net) within 10 m of the surface and within 10 m of the bottom. Mean densities in surface waters decreased markedly from the mid-shelf to outer shelf and the Coral Sea, but no cross-shelf gradient occurred in the bottom-water. Densities of copepods on the mid-shelf (surface and bottom waters) and in bottom-waters of the outer shelf were typically ca. 400 m–3. Significantly lower densities (ca. 100 m–3) occurred in surface waters of the outer shelf, except during outbursts of Acartia australis, when densities in these waters differed little from those elsewhere on the shelf. In oceanic waters, 10 km from the outer shelf station, copepod densities in surface waters were ca. 40 m–3. Four of the five most abundant copepod taxa in surface waters, Paracalanus spp., Eucalanus crassus, Acrocalanus gracilis and Canthocalanus pauper, tended to be most abundant at the mid-shelf end of the transect. Acartia australis was sporadically very abundant in surface waters of the outer shelf, as was Paracalanus spp. in bottom-water of the outer shelf. An assemblage of Coral Sea species of copepod occurred in bottom-water of the outer shelf during two major intrusions, but not at other times. Densities of all common species varied considerably between cruises. Maximum densities of all common species except A. australis tended to be associated with diatom blooms linked to intrusions but a bloom did not necessarily mean all common species were abundant. Fish larvae included both reef and non-reef taxa, with reef taxa predominating on the outer shelf (approx 2:1 in density of individuals) and non-reef taxa dominating in nearshore samples (approx 2:1). Nine of the ten most abundant taxa analysed showed highly significant variation in numbers among stations and all but one of these also exhibited significant station x cruise interactions. Interactions generally reflected changes in the rank importance of adjacent stations from one cruise to the next or lack of any significant cross-shelf variation on some cruises where overall abundance of the taxa was low.  相似文献   

7.
The EPA lead model predicts mean blood lead levels and risk of elevated blood lead levels in children based on lead uptake from multiple sources. In the latest model versions, environmental data from individual homes within a community can be used to predict the overall blood lead distribution and percent risk of exceeding a specific blood lead level (i.e. 10 g dl–1). Recent criteria used by the EPA to evaluate this information include no more than 5% of houses with a greater than 5% lead risk, and a community weighted-average risk below 5%. Environmental (primarily soil) and blood lead data from a residential community near a smelter were used to illustrate recent uses of the model. Scheduled remediation in the community will remove soil for approximately 60% of the houses (i.e. those with lead levels > 1000 mg kg–1). After remediation, the model results indicate a relatively low community risk (0.5–1.9%), although the percentage of houses with lead risks above 5% ranged from 3 to as high as 13%, depending on the variation in blood lead and assuming the model's 7 g dl–1 increase in blood lead with each 1000 mg kg–1 increase in soil lead level. A comparison of the limited blood lead data with soil lead levels below 1000 mg kg–1, however, indicated no apparent relationship. Given these uncertainties, less invasive actions than additional soil removal (e.g. exposure intervention, monitoring conditions, and follow-up as necessary) may be appropriate under the new EPA guidance for lead in soil.  相似文献   

8.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Length-weight regressions were derived for twelve genera of copepods (R2=0.79 to 0.97). For eight occasions spanning the study period, biomass estimates generated from these length-weight regressions differed by only 3% from direct weight determinations. The mean ash content of copepods was 7.1%, and the energy density was 20.8 kJ g-1 ash-free dry weight (AFDW). Mean annual biomass of the total copepod community in the upper 60 m was 1.83 mg AFDW m-3 (range 1.14 to 2.89 mg AFDW m-3), and for the 200-m water column was 0.96 mg AFDW m-3 (range 0.12 to 1.99 mg AFDW m-3). Estimates of generation times for five common taxa ranged from 16.1 to 33.4 d. None of the taxa investigated displayed isochronal development; in general, stage duration increased in later copepodite stages. Weight increments showed a significant decrease in later copepodite stages, but with strong reversal of the trend from stage 5 to adult female in most species. Daily specific growth rates also declined in later copepodite stages, and ranged from 1.49 d-1 in stage 1–2 Paracalanus/Clausocalanus spp. to 0.04 in stage 5-female of Oithona plumifera. Progressive food limitation of somatic copepodite growth and egg production is postulated. Naupliar production was 50.4 to 59.5% of copepodite production, and egg production was 35.1 to 27.7% of copepodite production in the 60-and 200-m water columns, respectively. Total annual copepod production, including copepodites, nauplii, eggs and exuviae, was 160 kJ m-2 yr-1 for the upper 60 m and 304 kJ m-2 yr-1 for the upper 200 m. Secondary production of the copepod community in oceanic waters off Discovery Bay approaches 50% of the corresponding value in tropical neritic waters.  相似文献   

9.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

10.
This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Çan, Çanakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene–Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO4 2– (1200.2 mg L–1), Cl (121.7 mg L–1), HCO3 (32.5 mg L–1), Na+ (494 mg L–1), K+ (30.2 mg L–1), Ca2+ (102 mg L–1), Mg2+ (15.2 mg L–1), and SiO2 (65.22 mg L–1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO4 2– (575 mg L–1), Cl (193.2 mg L–1), HCO3 (98.5 mg L–1), Na+ (315 mg L–1), K+(7.248 mg L–1), Ca2+ (103 mg L–1), Mg2+ (0.274 mg L–1), and SiO2(43.20 mg L–1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+ and r(SO4 2–)>rCl>r(HCO3 ). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.  相似文献   

11.
Growth and secondary production of pelagic copepods near Australia's North West Cape (21° 49 S, 114° 14 E) were measured during the austral summers of 1997/1998 and 1998/1999. Plankton communities were diverse, and dominated by copepods. To estimate copepod growth rates, we incubated artificial cohorts allocated to four morphotypes, comprising naupliar and copepodite stages of small calanoid and oithonid copepods. Growth rates ranging between 0.11 and 0.83 day–1 were low, considering the high ambient temperatures (23–28°C). Calanoid nauplii had a mean growth rate of 0.43±0.17 day-1 (SD) and calanoid copepodites of 0.38±0.13 day-1. Growth rates of oithonid nauplii and copepodites were marginally less (0.38±0.19 day–1 and 0.28±0.11 day–1 respectively). The observed growth rates were suggestive of severe food limitation. Although nauplii vastly outnumbered copepodite and adult copepods, copepodites comprised the most biomass. Copepodites also contributed most to secondary production, although adult egg production was sporadically important. The highest copepod production was recorded on the shelf break (60 mg C m-2 day-1). Mean secondary production over both shelf and shelf break stations was 12.6 mg C m-2 day-1. Annual copepod secondary production, assuming little seasonality, was estimated as ~ 3.4 g C m-2 year-1 (182 kJ m-2 year-1).Communicated by G.F. Humphrey, Sydney  相似文献   

12.
Macrozooplankton/micronekton in the epipelagic zone (0–100 m) of the NW Weddell Sea were sampled with a 10 m2 multiple opening-closing net environmental sampling system (MOCNESS) trawl during three cruises in 1995 and 1996. A total of 40 species were collected during all cruises. Community composition, as measured using Bray-Curtis analysis and multi-dimensional scaling, permitted separation into two groups: group 1 included samples collected during September–October 1995 and group 2 contained samples collected during April-May 1996 and November–December 1996. Zooplankton collections were dominated by Thysanoessa macrura in September–October 1995 (high pack-ice cover) and by both Euphausia superba and Salpa thompsoni in April–May 1996 (intermediate pack-ice cover) and November–December 1996 (open water). Copepods were not sampled quantitatively by the MOCNESS trawl and were not included in this analysis. Trends in measured parameters of community structure are discussed with respect to environmental characteristics during each sampling period.Communicated by P.W. Sammarco, Chauvin  相似文献   

13.
Distribution patterns, population structure and biomass of the euphausiidsNyctiphanes capensis andEuphausia hanseni were examined off the coast of Namibia, southwest Africa, in relation to temperature, depth and season, from data collected on nine surveys from September 1982 to March 1984. High densities ofN. capensis were found in the shallow coastal waters (<200 m), with the biomass of adults ranging from 675 to 5 706 mg dry wt m–2. For adultE. hanseni, the biomass was an order of magnitude lower, ranging from 65 to 505 mg dry wt m–2, with most specimens occurring over the shelf break at depths of 200 to 1000 m. These distribution patterns remained relatively constant throughout the year, despite seasonal differences in upwelling events. Both species displayed continuous breeding, with 43 to 82% of the adult femaleE. hanseni being fertilized, while a much lower proportion ofN. capensis females were reproductively active (0.5 to 26%). Different breeding strategies were adopted by these two euphausiid species, withE. hanseni producing frequent broods (14.8 broods in 6 mo) consisting of relatively large eggs which are released into the sea, andN. capensis exhibiting a lower frequency of spawning, with broods consisting of large numbers of relatively small eggs, protected by a brood pouch. These strategies enable both species to maintain high densities throughout the year in a fluctuating physical environment. Growth rate estimated from size-frequency distributions were 0.003 to 0.063 mm d–1 forN. capensis and 0.077 to 0.083 mm d–1 forE. hanseni, suggesting an adult lifespan of approximately 6 mo for both species. Maximum sizes were attained in September, withN. capensis reaching a total length of 21 mm (in contrast to all previous studies onN. capensis, where the maximum size recorded was only 13 mm total length) andE. hanseni a total length of 33 mm.  相似文献   

14.
Seasonal population dynamics of the gammarid Acanthostepheia malmgreni Goës in Conception Bay, Newfoundland, were examined from October 1998 to November 2000. This species exhibited a 2.5-year life span, with the reproductive cycle correlating with seasonal phytoplankton flux. Females were semelparous and died following a 5-month brooding period and the subsequent release of juveniles in April and May. The biennial life cycle of this population should result in the presence of two cohorts in the hyperbenthos at any given time. However, the cohorts alternated in strength from year to year, which affected annual density, biomass and production during the study period. Densities were 64±87 ind. per 100 m3 in 1999 and 491±492 ind. per 100 m3 (mean±SD) in 2000. Secondary production was estimated at 18–44 mg C m–2 in 1999 and 180–311 mg C m–2 in 2000. The annual P/B ratios were 0.89 and 2.27 in 1999 and 2000, respectively. Growth varied both among and within cohorts, with different life-history stages exhibiting variable growth rates ranging from 0 to 12 mg dry mass month–1.Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

16.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

17.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

18.
Winter and summer zooplankton maxima were observed on both near-reef and offshore sampling sites in the northern part of the Gulf of Aqaba, with summer maxima smaller than those of winter and more characterized by larval forms. Near-reef zooplankton biomass was generally several times greater than that observed 2 km offshore. During 1987, a near-reef maximum of 155 ind. or 12.2 g wet biomass m–3 was observed in March, while 103 ind. or 8.5 g wet biomass m–3 was observed in July. In the same year, 2 km offshore a maximum of 53 ind. or 2.5 g wet biomass m–3 was observed in February, while a maximum of 33 ind. or 0.5 g wet biomass m–3 was noted in July. The following year, 1988, the near-reef zooplankton abundances were little changed, but offshore zooplankton abundances were much higher (317 m–3). During 1987, the dominant winter (March) forms near the reef were gammarid amphipods, at maximum concentrations of 100 ind. m–3, where the summer (July) maximum was composed primarily of mysids (34 m–3), gammarid amphipods (30 m–3), and fish eggs (24 m–3). The offshore winter zooplankton fauna was characterized by copepods and appendicularians, each at a maximum concentrations of ca 13 ind. m–3, while the summer maximum was dominated by brachyuran zoea (31 m–3). Though the 1988, winter near-reef zooplankton community compositions were similar to those of 1987, the offshore zooplankton fauna was dominated by ostracods, which were relatively rare in previous years. Preliminary data suggests that holoplanktonic forms like chaetognaths, copepods and appendicularians, at an offshore site exhibit different patterns of vertical migration than those near the reef. This different behavior may result from different species compositions of these taxa or from high concentrations of pseudoplanktonic bentho-neritic peracarid crustaceans.Please address correspondence and reprint requests to T. Echelman, Marine Science Research Center, State University of New York, Stony Brook, New York 11794-5000, USA  相似文献   

19.
Primary production of the marine phanerogam Posidonia oceanica (Linnaeus) Delile was measured by lepidochronological analyses at 22 sites in the Mediterranean Sea (Corsica, France, Italy, Sardinia and Turkey), between 1983 and 1992, to determine spatial and temporal variations. Leaf production (blade and sheath) ranged from 310 to 1 540 mg dry wt shoot–1 yr–1, depending on site and depth. Rhizome production ranged from 24 to 120 mg dry wt shoot–1 yr–1 (6% of average leaf production). At some sites the results obtained by lepidochronological analysis were consistent with earlier results obtained by classic methods (e.g. leaf-marking). While primary production per shoot (mg dry wt shoot–1 yr–1) displayed no significant differences between sites, primary production of the P. oceanica meadow (g dry wt m–2 yr–1) decreased with increasing depth at all sites studied. This decrease correlated with reduced density of the meadow (number of shoots per m2) with increasing depth. Past primary production was also extrapolated at three sites at the island of Ischia (Italy) for a period of 5 yr in order to determine interannual variations over a period of several years. While major variations were recorded for the surface stations (5 and 10 m depth), production remained stable at the deepest station (20 m depth). Given the large geographical scale of the study (location, depth range), it would appear that while P. oceanica production remains considerable, the values recorded in the literature on the basis of classical analyses (surface stations) represent maxima, and cannot be generalised for meadows as a whole.  相似文献   

20.
S. Y. Lee 《Marine Biology》1990,106(3):453-463
Net primary productivity and organic matter flow of a mangrove-dominated wetland was estimated by following production and detritus dynamics in a tidal pond in north west Hong Kong in 1986–1988 (9.1 ha). Total productivity was 12.47 t dry wt ha–1 yr–1, of which >90% was from emergent macrophytes (the mangroveKandelia candel and the reedPhragmites communis). High turbidity and high summer temperatures probably limited respective production by phytoplankton and benthic macroalgae (dominated byEnteromorpha crinata). Despite the high total productivity, little detritus was exported from the emergent macrophyte stands, due to the low inundation frequency. This created a net water column carbon deficit which was provided for by the high organic matter import (mean = 4.42 g ash free dry wt m–2 d–1) from the incoming water. This same sediment and particulate organic carbon input giving a high accretion rate of 1.7 cm yr–1 was probably also the force behind progressive dis-coupling of emergent macrophyte production from water column consumers. This resulted in a tendency to retain production in the emergent macrophyte stands while the water column community increasingly relied on allochthonous carbon. This shift from a net exporter to a net importer of carbon in landward wetlands is probably characteristic of the transition into nutrient-conservative terrestrial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号