首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   

2.
Plastics are present in a lot of aspects of everyday life. They are very versatile and resistant to microbial attack. Polyurethanes are used in several industries and are divided in polyester and polyether polyurethanes and there are different types among them. Despite their microbial resistance, they are susceptible to the attack of fungi and bacteria but the mechanism to elucidate its biodegradation are unknown. There are reports from bacteria and fungi that are capable of degrading polyurethane but the studies about the enzymes that attack the plastic are focused on bacterial enzymes only. The enzymes reported are of type esterase and protease mainly since these enzymes are very unspecific and can recognize some regions in the polyurethane molecule and hydrolyze it. Fungal enzymes have been studied prior the 1990s decade but recently, some authors report the use of filamentous fungi to degrade polyurethane and also report some characteristics of the enzymes involved in it. This review approaches polyurethane biodegradation by focusing on the enzymes reported to date.  相似文献   

3.
The worldwide accumulation of non-degradable plastic materials, such as plastic bags, is one of the most important environmental concerns nowadays. The use of degradable materials is an option to mitigate the environmental impact generated by the consumption of plastics. One of the technologies used for the manufacture and use of degradable plastics is the use of pro-degradant additives that are incorporated in conventional plastics to promote their degradation under certain conditions. The aim of this study is to evaluate the process of oxidation, biodegradation and potential ecotoxicity of polyethylene films containing an oxo-degradable additive, according to the standard ASTM D-6954. This method establishes a procedure in which the samples are subjected to consecutive steps of accelerated oxidation, biodegradation by composting and ecotoxicity assessment. Furthermore, the effect of the presence of printing ink in the polyethylene samples with oxo-degradable additive was evaluated, and the results were compared with those obtained for samples of conventional polyethylene and polylactic acid. After 180 days of laboratory controlled composting, the samples reached the following percentages of biodegradation: polylactic acid, 41 %; printed oxo-degradable polyethylene, 32.24 %; oxo-degradable polyethylene, 25.84 %; printed polyethylene, 18.23 % and polyethylene, 13.48 %. The cellulose sample used as a control was mineralized in 58.45 %. Ecotoxicity assessment showed that the products of biodegradation of the samples tested, did not generate a negative effect on germination or development of the vegetal species studied. Under proper waste management conditions, these plastics can be used as an option to decrease the environmental impact of plastic films.  相似文献   

4.
微生物降解石油烃污染物的研究进展   总被引:8,自引:1,他引:7  
对石油烃污染物的生物处理技术进行了较全面的介绍,总结了国内外在该领域的研究成果.重点介绍了石油烃降解微生物种类、石油烃降解酶、环境影响因素以及微生物降解石油烃技术的应用等方面的研究进展.分析了现有研究中存在的不足,并对今后的研究趋势作了预测和展望.  相似文献   

5.
Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23 days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps.Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil.  相似文献   

6.
Bacterial diversity of full scale rotary drum composter from biodegradable organic waste samples were analyzed through two different approaches, i.e., Culture dependent and independent techniques. Culture-dependent enumerations for indigenous population of bacterial isolates mainly total heterotrophic bacteria (Bacillus species, Pseudomonas species and Enterobacter species), Fecal Coliforms, Fecal Streptococci, Escherichia coli, Salmonella species and Shigella species showed reduction during the composting period. On the other hand, Culture-independent method using PCR amplification of specific 16S rRNA sequences identified the presence of Acinetobacter species, Actinobacteria species, Bacillus species, Clostridium species, Hydrogenophaga species, Butyrivibrio species, Pedobacter species, Empedobactor species and Flavobacterium species by sequences clustering in the phylogenetic tree. Furthermore, correlating physico-chemical analysis of samples with bacterial diversity revealed the bacterial communities have undergone changes, possibly linked to the variations in temperature and availability of new metabolic substrates while decomposing organics at different stages of composting.  相似文献   

7.
Provided that infectious prions (PrPSc) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P < 0.05) headspace concentrations of CH4 primarily during the early stages of the first cycle and N2O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrPSc.  相似文献   

8.
Two different microbial communities able to degrade atrazine (atz) were inoculated in four different soils. The most critical factor affecting the success of inoculation was the soil pH and its organic matter (OM) content. In two alkaline soils (pH > 7), some inoculations led immediately to a strong increase of the biodegradation rate. In a third slightly acidic soil (pH = 6.1), only one inoculum could enhance atz degradation. In a soil amended with organic matter and straw (pH = 5.7, OM = 16.5%), inoculation had only little effect on atz dissipation on the short as well as on the long-term. Nine months after the microflora inoculations, atz was added again and rapid biodegradation in all alkaline inoculated soils was recorded, indicating the long-term efficiency of inoculation. In these soils, the number of atz degraders was estimated at between 6.5 × 103 and 1.5 × 106 (g of soil)-1, using the most probable number (MPN) method. Furthermore, the presence of the atz degraders was confirmed by the detection of the gene atzA in these soils. Denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA genes indicated that the inoculated bacterial communities had little effect on the patterns of the indigenous soil microflora.  相似文献   

9.
Bio‐Traps® were used to investigate biodegradation of benzene, methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA) under different conditions at a fractured rock site to aid the selection of a bioremediation approach. The Bio‐Traps were amended with the 13C‐labeled constituent of interest and sampled sequentially at 15‐, 30‐, 60‐, and 90‐day intervals. The conditions tested were biodegradation during operation of an air sparge system, amendment with nitrate during the air sparge operation, anaerobic biodegradation with the system turned off, and anaerobic biodegradation with nitrate amendment. There was increased biomass with nitrate amendment whether the air sparge system was on or off for all the constituents of interest. The diversity of the microbial community, determined by phospholipid fatty acid analysis, decreased with nitrate amendment as more specialized degraders were selected. The most negative indicators of potential biodegradation performance were observed with the anaerobic control. There was less biomass overall, less incorporation of 13C into biomass, and decreased membrane permeability. As testing with additional amendments continues at the site, it is not yet certain which treatment might be selected for bioremediation, but the Bio‐Trap tests thus far have identified that the in situ, natural attenuation condition is least favorable for biodegradation. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Biodegradability and Biodegradation of Polyesters   总被引:4,自引:0,他引:4  
A variety of biodegradable plastics have been developed in order to obtain useful materials that do not cause harm to the environment. Among the biodegradable plastics, aliphatic polyesters such as: poly(3-hydroxybutyrate) (PHB), poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS), and poly(l-lactide) (PLA) have become the focus of interest because of their inherent biodegradability. However, before their widespread applications, comprehensive studies on the biodegradability and biodegradation mechanisms of these polyesters are necessary. Thus, this paper describes the degradation mechanisms and the effects of various factors on the degradation of polyesters. The distribution of polymer-degrading microorganisms in the environment, different microorganisms and enzymes involved in the degradation of various polyesters are also discussed.  相似文献   

11.
This study models and evaluates the kinetics of C-CO2 evolution during biodegradation of plastic materials including Polyethylene (PE), PE/starch blend (PE/starch), microcrystalline cellulose (MCE), and Polylactic acid (PLA). The aerobic biodegradation under controlled composting conditions was monitorated according to ISO 14855-1, 2004. The kinetics model was based on first order reaction in series with a flat lag phase. A non-linear regression technique was used to analyze the experimental data. SEM studies of the morphology of the samples before and after biodegradation testing were used to confirm the biodegradability of plastics and the accuracy of the model. The work showed that MCE and PLA produced the high amounts of C-CO2 evolution, which gave readily hydrolysable carbon values of 55.49% and 40.17%, respectively with readily hydrolysis rates of 0.338 day−1 and 0.025 day−1, respectively. Whereas, a lower amount of C-CO2 evolution was found in PE/starch, which had a high concentration of moderately hydrolysable carbon of 97.74% and a moderate hydrolysis rate of 0.00098 day−1. The mineralization rate of PLA was 0.500 day−1 as a lag phase was observed at the beginning of the biodegradability test. No lag phase was observed in the biodegradability testing of the PE/starch and MCE. The mineralization rates of the PE/starch and MCE were found to be 1.000 day−1, and 1.234 day−1, respectively. No C-CO2 evolution was observed during biodegradability testing of PE, which was used for reference as a non-biodegradable plastics sample.  相似文献   

12.
The current paper is aimed at understanding the environmental fate of linear low density polyethylenes (LLDPE) films designed for mulching purposes and loaded with different pro-degradant additives. These were analyzed, upon exposure to natural sunlight for a period intended to mimick a general crop season in the mediterranean region. The selected samples underwent a relatively low extent of degradation as monitored by carbonyl index, molecular weight variation, extractability by solvent, changes in the onset of the decomposition temperature and crystallinity. The tendency to biodegradation of outdoor exposed LLDPE was then assessed under different environmental compartments including soil medium, aqueous medium as well as in axenic culture of white-rot fungus Phanerochaete chrysosporium. That fungus is known to be effective in the degradation of recalcitrant organic materials and plastic items. During the soil burial biodegradation test, lasted for 27?months, samples specimen were withdrawn at time intervals and characterized by means of structural and thermal analysis. These analytical assessments allowed to monitor any progress of oxidative degradation as a direct effect of the incubation in an active microbial environment. Analogous characterizations were carried out at the end of the biodegradation tests in aqueous medium and in P. chrysosporium axenic cultures. Data presented here are in keeping with the initial abiotic oxidation via a free radical chain reaction promoted by a pro-degradant additive acting on hydroperoxides and peroxide moieties present initially in the polymer bulk. This step was followed by a free radical cascade reactions leading to degradation once the oxidation started under relatively mild conditions (sunlight exposure). During the incubation step in soil, the abiotically degraded samples underwent significant variation in the level of oxidation and degradation with respect to the detected starting values. Indications were gained on the synergistic effect of a random fashion microbial metabolization coupled to biotically mediated oxidation of the original abiotically fragmented samples. Similar results were obtained in the biodegradation tests carried out in the aqueous media and in presence of P. chrysosporium axenic cultures. These evidences are suggesting the role of natural occurring microorganisms in promoting both partial oxiditation and degradation of LLDPE samples in combination with contextual mineralization process of the oxidized fragments.  相似文献   

13.
In Brazil, few studies on microbial content of dental solid waste and its antibiotic susceptibility are available. An effort has been made through this study to evaluate the hazardous status of dental solid waste, keeping in mind its possible role in cross-infection chain. Six samples of solid waste were collected at different times and seasons from three dental health services. The microbial content was evaluated in different culture media and atmospheric conditions, and the isolates were submitted to antibiotic susceptibility testing. A total of 766 bacterial strains were isolated and identified during the study period. Gram-positive cocci were the most frequent morphotype isolated (48.0%), followed by Gram-negative rods (46.2%), Gram-positive rods (5.0%), Gram-negative-cocci (0.4%), and Gram-positive coccobacillus (0.1%). Only two anaerobic bacteria were isolated (0.3%). The most frequently isolated species was Staphylococcus epidermidis (29.9%), followed by Stenotrophomonas maltophilia (8.2%), and Enterococcus faecalis (6.7%). High resistance rate to ampicillin was observed among Gram-negative rods (59.4%) and Gram-positive cocci (44.4%). For Gram-negative rods, high resistance was also noted to aztreonam (47.7%), cefotaxime (47.4%), ceftriaxone and cefazolin (43.7%), and ticarcillin-clavulanic acid (38.2%). Against Gram-positive cocci penicillin exhibit a higher resistance rate (45.0%), followed by ampicillin, erythromycin (27.2%), and tetracycline (22.0%). The present study demonstrated that several pathogenic bacteria are present in dental solid waste and can survive after 48 h from the waste generation time and harbor resistance profiles against several clinical recommended antibiotics.  相似文献   

14.
In this experiment, three different fungal species, viz. Trichoderma viridae, Aspergillus niger and Phanerochaete chrysosporium, were inoculated in 7 day and 15 day partially decomposed water hyacinth to study their effect on enzymatic activities, microbial respiration and fungal biomass of the final stabilized product. The results suggested that increasing the duration of pre-composting from 7 days to 15 days did not show any significant effect on the activities of hydrolytic enzymes. Inoculation of fungi significantly (P ? 0.05) increased cellulase, protease and acid and alkaline phosphatase activities. The highest value of ergosterol was recorded in A. niger-inoculated vermicomposts. Inoculation of P. chrysosporium in initial organic waste registered the highest chitin content in vermicompost. A comparison of fungal biomass and chitin content revealed a conversion factor of 2.628 with a standard deviation of 0.318. Due to significant correlation (r = 0.864), this conversion factor allows for the calculation of fungal biomass from chitin, which is comparatively more stable than ergosterol.  相似文献   

15.
Most of the standardized biodegradation tests used to assess the ultimate biodegradation of environmentally degradable polymers are based solely on the determination of net evolved carbon dioxide. However, under aerobic conditions, it has to be considered that heterotrophic microbial consortia metabolize carbon substrates both to carbon dioxide and in the production of new cell biomass. It is generally accepted that in the relatively short term, 50% of the carbon content of most organic substrates is converted to CO2, with the remaining carbon being assimilated as biomass or incorporated into humus. The latter is particularly important when the metabolism of the organic matter occurs in a soil environment. A straightforward relationship between the free-energy content of a carbon substrate (expressed as the standard free-energy of combustion) and its propensity for conversion to new microbial biomass rather than mineralization to CO2 has been established. This can potentially lead to underestimation of biodegradation levels of test compounds, especially when they consist of carbon in a fairly low formal oxidation state and relatively high free-energy content. In the present work, the metabolism of different kind of carbon substrates, especially in soil, is reviewed and compared with our own experimental results from respirometric tests. The results show that conversion of highly oxidized materials, such as the commonly used reference materials, cellulose or starch, to CO2 may be significantly overestimated. The addition of glucosidic material to soil leads to greatly increased respiration and is accompanied by a very low conversion to biomass or humic substances. In contrast, relatively less oxidized substrates metabolize more slowly to give both CO2 and biomass to an extent which may be significantly underestimated if glucosidic materials are used as the reference. The need for an overall carbon balance taking into account both the carbon immobilized as biomass and that volatized as CO2 must be considered in standard respirometric procedures for assessing the biodegradability of slowly degrading macromolecules.  相似文献   

16.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

17.
Poly(hydroxyalkanoates) (PHAs) are a class of bacterially-derived polymers that are naturally biodegradable through the action of extracellular depolymerase enzymes secreted by a number of different bacteria and fungi. In this paper we describe the development of topographical imaging protocols (by both scanning electron microscopy; SEM, and confocal microscopy; CM) as a means of monitoring the biodegradation of solution cast films of poly(3-hydroxybutanoate-co-3-hydroxyhexanoate) (P3HB/3HHx) and medium-chain-length (mcl-) PHA. Pseudomonas lemoignei and Comamonas P37C were used as sources for PHA depolymerase enzymes as these bacteria are known to degrade at least one of the polymers in question. SEM revealed the bacterial colonization of the film surfaces while CM permitted the comparative assessment of the roughness of the film surfaces upon exposure to the two bacterial strains. By dividing the total surface area of the film (A′) by the total area of the scan (A) it was possible to monitor biodegradation by observing differences in the topography of the film surface. Prior to inoculation, P3HB/3HHx films had an A′/A ratio of 1.06. A 24-h incubation with P. lemoignei increased the A′/A ratio to 1.47 while a 48- and 120-h incubation with Comamonas resulted in A′/A ratios of 1.16 and 1.33, respectively. These increases in the A′/A ratios over time demonstrated an increase in the irregularity of the film surface, indicative of PHA polymer breakdown. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

18.
The primary biodegradability of polyethylene (PE) films containing different percentages of cornstarch (0–50%) and other additives (prooxidant, oxidized polyethylene) was tested using four species of earthworms (Eisenia fetida, Lumbricus terrestris, Aporectodea trapezoides, Aporectodea tuberculata), three species of cockroaches (Periplaneta americana, Blaberus sp.,Blattella germanica), termites (Reticulotermes flavipes), sowbugs (Porcellio laevis), and crickets (Acheta domesticus). These studies were conducted to elucidate the potential role of soil macroinvertebrates in degrading starch/PE biodegradable plastics. The results of the macroinvertebrate bioassays indicate that crickets, cockroaches, and sowbugs consumed starch-containing PE films most readily. In addition, the degree to which the films were attacked and consumed was directly related to the starch content of the film. Films with oxidized polyethylene and those containing prooxidant (vegetable oil and a transition metal catalyst) were also consumed. None of the four species of earthworms tested or the termites showed any activity toward the starch/polyethylene films. These results have important implications for determining the fate of novel plastic formulations which claim to be biodegradable in natural environments. Studies such as these, coupled with studies on microbial degradation, will help provide the type of information needed to assess the environmental fate of biodegradable starch/PE plastics and fill the voids in the scientific database regarding this rapidly developing field.  相似文献   

19.
This study presents the effect of biodegradation, in a composting medium, on properties of membrane-like crosslinked and noncrosslinked polyvinyl alcohol (PVA) and nanocomposites. The composting was carried out for 120 days and the biodegradation of these materials was characterized using various techniques. The changes in the PVA resin and nanocomposite surface topography and microstructure during composting were also characterized. The results from the analyses suggest biodegradation of PVA based materials in compost medium was mainly by enzymes secreted by fungi. The results also indicate that the enzymes degraded the amorphous regions of the specimens first and that the PVA crystallinity played an important role in its biodegradation. The surface roughness of the specimens was seen to increase with composting time as the microbial colonies grew which in turn facilitated further microorganism growth. All specimens broke into small pieces between 90 and 120 days of composting as a result of deep biodegradation. Glyoxal and malonic acid crosslinking decreased the PVA biodegradation rate slightly. Addition of highly crystalline microfibrillated cellulose and naturally occurring halloysite nanotubes in PVA based nanocomposites also decreased the biodegradation rate. The three factors: PVA crystallinity, crosslinking and additives, may be utilized effectively to extend the life of these materials in real life applications.  相似文献   

20.
Testing biodegradability of plastics under varied conditions of the environment as well as under laboratory conditions in accordance with valid international standards is very laborious, lengthy and often also economically demanding. For this reason, applicability was verified of gas chromatography to analyze gaseous phase when investigating the biodegradation course of plastics in an aqueous environment as an alternative to customary employed methods. A mathematical model of acid–basic CO2 equilibrium in a gas–liquid system was worked out, enabling to determine quantity of produced CO2 through chromatographic analysis of gaseous phase, in dependence on ratio of liquid and gas phase volumes (V l/V g) and on actual pH of liquid phase. Experimental conditions for organizing the tests were optimized. A ratio that proved suitable was V l/V g ≅ 0.1 at pH ≈ 7.1 of liquid phase. Under these test conditions, biodegradability of model samples, PHB, Gellan gum and Xanthan gum, was explored; course of biodegradation was studied through produced CO2 (values ) determined by analyzing gaseous phase through gas chromatography on the one hand, and through customary “titration” procedure on the other. With water-soluble polymers, the decrement in dissolved organic carbon (values D DOC) was also studied. Difference between values does not exceed 5%. The procedures in question are alternative “substituting” procedures for observing course of aerobic biodegradation of substances in an aqueous environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号