首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Based on pre-experimentation, three ornamental plants, Mirabilis jalapa, Impatiens Balsamin (I. Balsamin) and Tagetes erecta L., were selected as target plants to study the phytoextraction of chromium (Cr) in tannery sludge irrigated with four treatments according to Cr concentration gradient [Control (CK); 20.50 × 103 mg kg?1 (T1); 51.25 × 103 mg kg?1 (T2); 102.50 × 103 mg kg?1 (T3)]. Results of pot experiments showed that the biomass of Mirabilis jalapa and Tagetes erecta L. had no significant differences among the four treatments, while I. Balsamin showed a decline trend in the biomass with the increase of Cr concentration, probably due to some extent to the poisoning effect of Cr under treatment T2 or T3. Mirabilis jalapa accumulated Cr concentration, with 408.97, 124.97, 630.16 and 57.30 mg kg?1 in its roots, stems, leaves and inflorescence, respectively. The translocation factor and the bioaccumulation coefficient of Mirabilis jalapa are each greater than 1, indicating that Mirabilis jalapa has the strong ability to tolerate and enrich Cr by biological processes. Comparing accumulation properties of the three ornamental plants, in the amount and allocation, Mirabilis jalapa showed the highest phytoextraction efficiency and could grow well at the high Cr concentration. Our experiments suggest that Mirabilis jalapa is the expected flower species for Cr removal from tannery sludge.  相似文献   

2.
Haloferax mediterranei is an extremely halophilic archaeon that is able to synthesize polyhydroxyalkanoate (PHA) in high salt environment with low sterility demand. In this study, a mathematical model was validated and calibrated for describing the kinetic behavior of H. mediterranei at 15, 20, 25, and 35 °C in synthetic molasses wastewater. Results showed that the production of PHA by H. mediterranei, ranging from 390 to 620 mg h?1 L?1, was strongly dependent on the temperature. The specific growth rate (µ max), specific substrate utilization rate (q max), and specific decay rate (k d) of H. mediterranei increased with temperature following Arrhenius equation prediction. The estimated activation energy was 58.31, 25.59, and 22.38 kJ mol?1 for the process of cell growth, substrate utilization, and cell decay of H. mediterranei, respectively. The high temperature triggered the increased PHA storage even without nitrogen limitation. Thus, working at high temperatures seems a good strategy for improving the PHA productivity of H. mediterranei.  相似文献   

3.
Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.  相似文献   

4.
Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.  相似文献   

5.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

6.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   

7.
Synthesis of sodium alginate-g-poly(acrylamide-co-N-methylacrylamide) [S-III], sodium alginate-g-poly(N-methylacrylamide-co-N,N-dimethylacrylamide) [S-II], sodium alginate-g-poly(acrylamide-co-N,N-dimethylacrylamide) [S-I]. Sodium alginate-g-poly(N,N-dimethylacrylamide) [SAG-g-PDMA] and sodium alginate-g-poly(acrylamide) [SAG-g-PAM] were prepared by solution polymerization technique using potassium peroxydisulfate as the initiator at 70?°C in water medium. The graft copolymers were characterized by FTIR and NMR (1H and 13C) spectroscopy, SEM and XRD studies. All the five graft copolymers were used to remove Pb(II) ions from the aqueous solution and also in flocculation studies of kaolin clay (1.0 wt%), silica (1.0 wt%) and iron ore slime (0.25 wt%) suspensions. A comparative studies of all the five graft copolymers were also made in both the two cases. The Pb(II) ion removal capacity of all the graft copolymers follows the order S-III?>?SAG-g-PAM?>?S-II?>?SAG-g-PDMA?>?S-I. But the flocculation performance of the graft copolymers follows the order S-II?>?S-I?>?S-III?>?SAG-g-PDMA?>?SAG-g-PAM. S-III was also used for the competitive metal ion removal with Hg(II), Cd(II), Cu(II) and Zn(II). Pb(II) adsorption of S-III (the best Pb(II) ion adsorber) follows pseudo second order rate equation and Langmuir adsorption isotherm.  相似文献   

8.
The enzyme assisted extraction conditions of polysaccharide from Cordyceps militaris mycelia were firstly investigated by kinetics analysis and the optimal operating was found to be: extraction temperature 40 °C; solid-solvent ratio 1:20; extraction pH 4.0; cellulase concentration 2.0%. The polysaccharide extraction yield was 5.99% under these optimized conditions. Furthermore, a fundamental investigation of the biosorption of Pb2+ from aqueous solution by the C. militaris polysaccharide was performed under batch conditions. The suitable pH (5.0), polysaccharide concentration (0.20 g L?1), initial Pb2+ concentration (300 mg L?1) and contact time (40 min) were outlined to enhance Pb2+ biosorption from aqueous medium. The Langmuir isotherm model and pseudo first order kinetic model fitted well to the data of Pb2+ biosorption, suggesting the biosorption of Pb2+ onto C. militaris polysaccharide was monolayer biosorption and physical adsorption might be the rate-limiting step that controlled the adsorption process. FTIR analysis showed that the main functional groups of C. militaris polysaccharide involved in adsorption process were carbonyl, carboxyl, and hydroxyl groups.  相似文献   

9.
The present work was to evaluate the stability potential of (E)-4-(3,4-dimethoxyphenyl)but-3-en-l-ol (Compound D) in polyherbal transdermal patches. The polyherbal formulation composed of the rhizomes of Zingiber cassumunar and Curcuma longa, leaves and stems of Cymbopogon citratus, rind and leaves of Citrus hystrix fruit, and leaves of Acacia rugata and Tamarindus indica. Polyvinyl alcohol and hydroxypropyl methylcellulose were used as a matrix film, and glycerine was used as a plasticizer. Stability testing was established for 6 months under accelerated conditions as according to International Conference on Harmonisation guidelines. Mechanical properties, moisture uptake, swelling ratio, and in vitro studies were evaluated. New Zealand white rabbits were used as the animal model. Results obtained after 6 months showed that the polyherbal transdermal patches were stable, with a good mechanical properties and hydrophilicity. In vitro study kinetics for active Compound D fitted to the Higuchi model for both release and skin permeation. The transdermal patch containing polyherbal formulation was safe to apply on the skin without irritation. Thus, transdermal patches containing this polyherbal formulation had good stability potential, with no irritation on application.  相似文献   

10.
Polyaniline (PANI) and Ag/PANI nanoporous composite were prepared by an oxidative polymerization method. The oxidation process of PANI nanoparticles was occurred using (NH4)2S2O8 while the oxidation process of Ag/PANI nanoporous composite was occurred using AgNO3 under the effect of artificial radiation. The structural, morphological, and optical properties of the PANI and Ag/PANI nanoporous structures were studied using different characterization tools. The results confirm the formation of polycrystalline nanoporous PANI and spherical nanoporous composite of Ag/PANI particles. Antibacterial activity tests against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, Escherichia coli, and Salmonella species were carried out using different concentrations of PANI nanoparticles and Ag/PANI nanoporous composites. PANI has not antibacterial effect against all studied pathogens. In contrast, Ag/PANI nanoporous composites possessed antibacterial activity that is identified by the zone of inhibition. The inhibition zones of bacteria are in order; Salmonella species?>?S. aureus?>?B. subtilis?>?E. coli. The inhibition zones of all bacteria increased with increasing concentrations of Ag/PANI nanoporous composites from 200 to 400 ppm then decreased with further increasing of the dose concentrations to 600 ppm. Finally, a simplified mechanism based on the electrostatic attraction is presented to describe the antimicrobial activity of Ag/PANI nanoporous composite.  相似文献   

11.
Studies have shown that the copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] possesses favorable mechanical properties for use in medical supplies and products (e.g., sutures, scaffolds, bone plates). One of the major under-addressed issues associated with the use of biodegradable, bio-based PHA polymers in resorbable medical products is the correlation between the mechanical properties and the in vivo material degradation over time. In this study, P(HB-co-17 mol% HHx) matrices were mechanically tested after either incubation in cultures of human embryonic kidney cells (HEK) for in vitro degradation studies for up to 4 weeks, or inserted into Danio rerio (zebrafish) tissues for in vivo degradation studies for up to 7 weeks. The mechanical properties and scanning electron microscopy (SEM) images of the degraded materials were examined and later correlated to understand the degradation phenomenon. Our results show that Young’s modulus of P(HB-co-17 mol%HHx) during in vitro studies decreased from 3.26 to 2.42 GPa within 4 weeks, and in vivo breakdown resulted in a significant decrease in Young’s modulus with a decrease from 3.26 to 0.51 GPa and a mass loss of 59 % within 7 weeks. SEM images showed the development of pores and cracks on the surface of the material over time. Plasticization and recrystallization were observed and likely play a role in the alteration of mechanical properties.  相似文献   

12.
The main objective of this study was to determine whether methane potential of waste could be estimated more easily by a limited number of waste characterization variables. 36 samples were collected from 12 locations and 3 waste depths in order to represent almost all waste ages at the landfill. Actual remaining methane potential of all samples was determined by the biochemical methane potential (BMP) tests. The cumulative methane production of closed landfill (cLF) samples reached 75–125 mL at the end of experiment duration, while the samples from active landfill (aLF) produced in average 216–266 mL methane. The average experimental k and L 0 values of cLF and aLF were determined by non-linear regression using BMP data with first-order kinetic equation as 0.0269 day?1–30.38 mL/g dry MSW and 0.0125 day?1–102.1 mL/g dry MSW, respectively. The principal component analysis (PCA) was applied to analyze the results for cLF and aLF along with BMP results. Three PCs for the data set were extracted explaining 72.34 % variability. The best MLR model for BMP prediction was determined for seven variables (pH–Cl–TKN–NH4–TOC–LOI–Ca). R 2 and Adj. R 2 values of this best model were determined as 80.4 and 75.3 %, respectively.  相似文献   

13.
Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8?±?3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29?±?0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.  相似文献   

14.
In this study, dl-malic acid and hydrogen peroxide were used as leaching agents to remove metals from e-waste (printed-circuit boards) and itaconic acid-grafted poly(vinyl alcohol)-encapsulated wood pulp (IA-g-PVA-en-WP) to uptake metals from leachate with high proficiency [11.63 mg g?1; 93.03 % for Cd(II), 11.90 mg g?1; 95.18 % for Pb(II), and 12.14 mg g?1; 97.08 % for Ni(II)]. Metals were recovered from the loaded biosorbent by desorption studies. The standard analytical techniques, such as elemental analysis, Fourier-transform-infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis, were used to characterize the recovering agent (biosorbent). At equilibrium, the metal uptake data were fitted to Langmuir and D–R isotherms (R 2 > 0.99) significantly, revealing, the homogeneous distribution of active sites on biosorbent’s backbone. The possible mechanism appeared to be ion exchanges of metal ions with H+ together with binding over functionalities (COO?). Dimensionless equilibrium parameter (R L) showed the favourability of metal uptake at lower concentration, while mean adsorption energy (E) certified the physical binding of metal on functionalities which was further confirmed by sticking probability and activation energy parameters. Reusability studies were also conducted to state the performance of biosorbent.  相似文献   

15.
The bioactive packaging polyvinyl alcohol (PVA)/starch films were prepared by incorporating combined antioxidant agents i.e. extracted spent coffee ground (ex-SCG) and citric acid. Effect of citric acid content on chemical compatibility, releasing of antioxidant, antibacterial activities, and physical and mechanical properties of PVA/starch incorporated ex-SCG (PSt-E) films was studied. The results of ATR-FTIR spectra showed that antioxidant agents of ex-SCG can penetrate into the film and the ester bond of blended films by citric acid was also observed. The presence of ex-SCG increased efficiency of antioxidant release and antimicrobial activity. The PSt-E film incorporated 30 wt% citric acid showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The incorporation of ex-SCG and citric acid into film showed a synergistic effect on antibacterial activity. The water resistance and kinetic moisture sorption improved with incorporation of citric acid. The tensile strength and biodegradability of samples were in range of 5.63–7.44 MPa and 65.28–86.64%, respectively. Based on this study, PSt-E film incorporated 30 wt% citric acid can be applied as novel food packaging materials.  相似文献   

16.
The rubber degrading activity of Streptomyces sp. CFMR 7 whose whole genome sequence was recently determined was tested with non-vulcanized fresh latex and common vulcanized rubber products such as latex glove, latex condom and latex car tyre. The degradation activity was unequivocally demonstrated by scanning electron microscopy with respect to microbial colonization efficiency, disintegration of rubber material and biofilm formation after 3, 6 and 9 months of inoculation. Fourier transform infrared spectroscopy comprising the attenuated total reflectance analysis on these inoculated products revealed insights into the biodegradation mechanism of this strain whereby, a decrease in the number of cis -1,4 double bonds in the polyisoprene chain, the appearance of ketone and aldehyde groups formation indicating an oxidative attack at the double bond of rubber hydrocarbon. In the presence of strain Streptomyces sp. CFMR 7, gel permeation chromatography analysis revealed a significant shift of the molecular weight distribution to lower values. Clear decrease in the molecular weight was observed over 3, 6 and 9 months of cultivation on fresh latex samples compared to other vulcanized products. No shift in the molecular weight distribution was observed for non-inoculated control. These results clearly showed that Streptomyces sp. CFMR 7 was able to cleave the carbon backbone of poly (cis -1,4-isoprene). Although this strain was able to degrade both non-vulcanized and vulcanized rubber products, faster degradation was obtained with natural rubber and rubber products with low complexity.  相似文献   

17.
Cellulose gel films were prepared by regeneration process using pre-cooled aq.(8 wt% LiOH + 15 wt% urea) mixture as solvent and ethyl alcohol as non solvent. The Terminus cattapa leaf extract diffused wet cellulose films were then dipped in 1–5 mM aq.AgNO3 solutions to allow in situ generation of silver nanoparticles (AgNPs). Besides the in situ generation, some AgNPs were also formed outside the wet films in the solution. The AgNPs formed outside the films were observed under transmission electron microscope and scanning electron microscope. The nanocomposite films were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis and tensile test. The thermal stability of the composite films was lower than that of the matrix up to a temperature of ~300 °C and afterwards showed a reverse trend. The tensile strength of the nanocomposite films was found to be higher than the matrix but decreased with increasing concentration of aq.AgNO3. The cellulose/AgNPs composite films showed good antibacterial activity against E. coli (gram positive) and Bacillus sp. (gram negative). Based on the aforementioned properties, the cellulose/AgNPs composite films can be considered for antibacterial packaging and medical applications.  相似文献   

18.
Coaxial electrospinning technique was used to fabricate the core–sheath composite nanofibers of ZnO nanoparticle (Nps) (10%, 20% w/w) doped polymethyl methacrylate (PMMA) (as sheath) and polyvinyl alcohol (PVA) (as core). Fourier transform infrared (FT-IR) spectra were confirmed the weak forces arise between ZnO Nps, PMMA and PVA matrixes. The hexagonal (wurtzite) structure of ZnO Nps with ~?30.8 nm of diameter was confirmed from the X-ray diffraction pattern. The morphology and microstructure of core–sheath composite nanofibers were confirmed from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is clearly seen from the TEM images that the PMMA encapsulate the PVA core. Core–sheath composite nanofibers were assessed against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria through quantitative, disk diffusion and viable cell count methods. It was found that ZnO Nps doped core–sheath nanofibers were effectively inhibit the growth of gram positive bacteria, B. subtilis.  相似文献   

19.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   

20.
The fertilizer properties of anaerobic digestate depend on the feedstock and operating conditions of digestion. In this study, the comparative fertilizer properties of mesophilic and thermophilic digestates from dairy manure were evaluated for plant nutrient contents, and special attention was paid to plant growth promoting bacteria (PGPB). Two digestates contained similar plant nutrient contents, while the thermophilic digestate contained higher contents of NH4+–N. The quantity of Bacillus and Pseudomonas in the mesophilic digestate was significantly higher than in the thermophilic digestate. Furthermore, Bacillus showed siderophore production and antifungal activity (43.5–75.3%), and Pseudomonas showed siderophore and phytohormone production (4.2–75.2 µg ml?1). One phosphate solubilizing isolate was also detected in the mesophilic digestate. These results indicated that two digestates showed different fertilizer properties with respect to nutrient contents and PGPB, and digestates had the potential to increase the availability of phosphorus and iron in the soil, both to provide phytohormones to plant roots and protect plants from fungal phytopathogens. The contents of indicator bacteria and heavy metals were analyzed to determine their environmental risk, and the results showed a high reduction in indicator bacteria and lower levels of heavy metals than in other feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号