首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
Radon-222 in Brazil: an outline of indoor and outdoor measurements   总被引:3,自引:0,他引:3  
This study discusses the methodology for measuring and assessing the radon concentration in indoor and outdoor environments. A research study was developed to investigate the long-term behavior of the diurnal and seasonal fluctuations of radon (222)Rn EEC (Equilibrium-Equivalent Concentration) and the influence of temperature and other climatic aspects on this behavior. The study was performed by means of both integrated and instantaneous measurements of radon and its short-lived daughter products for a period of 1 year in an indoor environment in Rio de Janeiro city, Brazil (reference environment), with continuous measurement, using a radon monitor with an alpha spectrometry detector.For a single day, a variability of about 50% could be observed in the (222)Rn EEC values measured on a hourly basis, with a maximum occurring early in the morning and a minimum in the afternoon. For the long-term period, seasonality is responsible for a two order of magnitude variability, with a maximum of 50 Bq.m(-3) in winter (dry season) and a minimum of 0.5 Bq.m(-3) in the summer months (wet season), outdoors. A negative correlation with temperature was observed. The conclusions of this experiment led to a survey of radon gas concentration in dwellings in Rio de Janeiro city, Brazil, in urban area with nearly 7 million inhabitants, through integrated sampling methods, using a Solid State Nuclear Track Detectors Technique (SSNTD). The study was conducted in different geomorphological locations in town. The radon gas concentration in Rio de Janeiro dwellings ranged from 5 Bq.m(-3) to 200 Bq.m(-3). A good correlation between indoor radon gas concentration and location of dwellings was observed. The seashore areas presented the lowest levels of indoor radon concentration, whereas the highest levels were found close to the mountains.  相似文献   

2.
A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m3 and at about 650 Bq/m3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m3. The average value of outdoor annual radon concentration was 57 Bq/m3, with a maximum value of 168 Bq/m3. The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics.  相似文献   

3.
Measurements of indoor radon concentrations were performed in 28 low-rise houses and 30 apartments in Patras area from December 1996 to November 1997, using nuclear track detectors. The investigation was focused on the effects of season and floor number, as well as on the existence of a basement in low-rise houses on indoor radon levels. It was found that the differences in mean radon concentrations between adjacent seasons, in a number of 61 selected sampling sites distributed in 28 houses, were statistically significant. As expected, a maximum was found in winter and a minimum in summer. The differences in mean radon concentration on different floors of the same houses were also statistically significant and followed a linear decrease from underground to 2nd floor. In addition, indoor radon concentrations in the ground floor were found to be influenced by the existence or not of a basement. The average annual radon concentration was found to be 41 Bq m(-3) for the houses, 28 Bq m(-3) for the apartments and 38 Bq m(-3) for all the dwellings. These values lead to an average effective dose equivalent of 1.1, 0.7 and 0.9 mSv y(-1), respectively. Residents living on the underground in low-rise houses, during winter, where the average effective dose equivalent is 2.1 mSv y(-1), attain the higher risk.  相似文献   

4.
The concentrations of 222Rn (radon) and its progeny with surrounding environmental gamma-dose rates were measured simultaneously inside and outside of buildings at 10 locations around Taipei and Hualien in Taiwan. For summer radon in Taiwan, indoor concentrations were estimated to be about 20 Bq m(-3) with about 90 nSv h- of environmental gamma, and outdoors, about 10 Bq m(-3) with about 70 nSv h(-1). The equilibrium factors were calculated to be 0.2-0.3 indoors and 0.3-0.4 outdoors. Indoor radon concentration had a weak positive correlation with gamma-dose rate. Since there is a possibility that high radon concentrations exist indoors during the cool season in Taiwan because of extremely low ventilation rates in the dwellings, a winter survey in January through February will be needed for future estimation of the annual effective dose.  相似文献   

5.
The paper presents results of natural radioactivity levels in the atmosphere obtained for a 5 years period (1994-1999) at the Bucharest Environmental Radioactivity Surveillance Station (BERSS). The variability of radon and thoron progeny activity concentrations is analysed in relation to the local dynamics of the meteorological parameters (wind speed, air temperature, air pressure, cloud cover, relative humidity). The radon and thoron progeny concentrations display a daily and seasonal variation, with the highest values in the early morning and the lowest values in the afternoon. The outdoor radon progeny concentrations show maximum values in autumn and minimum values in spring-summer. The outdoor thoron progeny concentrations display maximum values in autumn and minimum values in winter. Significant statistical correlations with the meteorological parameters were obtained. The study on the temporal variability of natural atmospheric radioactivity near Bucharest is a starting point for further assessment of the radiological consequences resulting from human activities.  相似文献   

6.
A new winter and summer investigation of radon concentrations in parts of the Ogof Ffynnon Ddu system at Penwyllt, South Wales, has been carried out using 100 environmental National Radiological Protection Board track etch detectors. Fifty detectors were installed in the system in December 1998 and again in August 1999 for a period of a month. The data obtained confirm that the system has moderately high radon concentrations with a system mean of 2318 Bq m(-3) in winter and 2844 Bq m(-3) in summer. Traverse means have a summer high of 3094 Bq m(-3) for OFDI to Cwm Dwr and a winter low of 1946 Bq m(-3). The extremely high concentrations approaching 20,000 Bq m(-3), reported previously from the system (Hyland, 1995), have not been reproduced. The data show that the airflow directions at the entrances are not what might have been predicted. Air appears to be largely continuously emerging from the lowest entrance but, at the higher entrances, conversely to the predictions, in winter air enters and in summer appears to be coming out or is variable. Internally, there are sites that in winter have very low radon concentrations that can only be explained by the ingress of fresh air. These are not matched in the summer experiment, again indicating that ingress of fresh air to some parts of the system is very variable. The data illustrate the complexity of airflow within a multi-entrance system but behind these variations several mean concentrations can be obtained from which an approximation of the dose likely to be received can be calculated. Using the maximum mean concentration obtained, 3094 Bq m(-3), and using the latest dose conversion, a 10 h underground trip in the Ogof Ffynnon Ddu system yields a calculated dose of 0.12 mSv. Given that the recommended limit for a member of the public is 1 mSv, this dose would be reached after about 80 h of caving in the system.  相似文献   

7.
From 2003-2004, using solid state nuclear detectors, a survey of the air radon level in 234 underground buildings in 23 cities of China was carried out during spring as well as summer and winter. The annual radon concentrations in these underground buildings range from 14.9 to 2482 Bq m(-3), with an overall mean value of 247 Bqm(-3). When radon concentrations are averaged according to cities, Fuzhou and Baotou have the relatively higher radon levels, which are 714 and 705 Bqm(-3), respectively. Guangzhou and Shanghai have the relatively lower radon levels with 71.1 and 72.6 Bqm(-3). The annual effective dose by exposure to radon received by people working in these cities is concluded to be 1.6 mSv. The geological formation, coating level, decorating materials and ventilation situation all affect the radon concentration in underground buildings. The radon level in underground buildings has the lowest value in winter and the highest value in summer.  相似文献   

8.
Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).  相似文献   

9.
The RAD Laboratory measured annual means of radon activity concentrations in 15 277 first-floor rooms of dwellings and in 325 rooms on upper floors in Hungary (1994-2004). The original purpose of the survey was to find radon-prone area in Hungary. The maximum measured value was 5800 Bq m(-3), while the minimum was 10 Bq m(-3). Due to geological diversity and different structures of buildings, the data set of first-floor rooms did not follow the lognormal distribution. Therefore, strata were chosen so that the measured data fitted the lognormal distribution. The numbers of dwellings above a given radon level were determined in each stratum. The national distribution was then taken as the sum of the individual distributions of all strata. This distribution was not lognormal. The parameters of the best fitting lognormal distribution were GM = 58 Bq m(-3), GSD = 2.2. The weighted averages of strata values GM = 62 Bq m(-3), GSD=2.1 were obtained corresponding to 92% of Hungarian dwellings.  相似文献   

10.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

11.
The seasonal variation of 222Rn concentrations in the air of tunnels constructed during World War II at Nagano City has been investigated. The determination of 222Rn concentrations in tunnel air was performed using a solid-state nuclear track detector technique. The monthly radon concentrations changed smoothly, decreasing towards winter and increasing towards summer, and it was found that the concentrations strongly correlate with the temperature difference between the inside and the outside of the tunnel. In the innermost areas of the tunnel, the maximum concentration was observed in July, its value being about 6500 Bq m (-3). The concentrations of radon in the tunnel air decrease exponentially towards the openings of the tunnel, which indicates that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air. These observations lead to the conclusion that the seasonal variation of the radon concentration in the tunnel air is mainly caused by a convection current due to a stack effect induced by the temperature difference between the tunnel air and the outside air.  相似文献   

12.
Radon levels in atmospheric and aquatic systems in Cyprus have recently been measured using the radon monitor Alpha Guard. Indoor and outdoor radon levels were obtained in situ, whereas analysis of radon concentrations in water was performed using tap and ground water samples collected from several areas of the island. The average value for outdoor and indoor radon concentration is 11+/-10 and 7+/-6 Bq m(-3), respectively, and for tap and ground water 0.4 Bq l(-1) and 1.4 Bq l(-1), respectively. From these data the annual dose equivalent of airborne radon to the Cypriot population is about 0.19 mSv y(-1), which is quite low compared to the total dose equivalent of natural and man-made ionising radiation in Cyprus. Radon levels in aquatic systems are relatively low due to an exhaustive utilisation of ground water resources and also to the increased input of desalinated sea water in the water distribution network and eventually into the ground water reservoirs.  相似文献   

13.
In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.  相似文献   

14.
Continuous measurement of hourly concentrations of 212Pb attached to aerosol particles was carried out during the whole year 2000 in the outdoor air of Milan (Italy). An improved experimental method based on on-line alpha spectroscopy during atmospheric particulate matter sampling allowed the contemporary determination of 212Pb and 214Bi through the deconvolution of the alpha energy spectral distribution analysis. The 212Pb hourly concentrations were about 100 times lower than 214Bi but showed a similar characteristic diurnal time trend. However, the influence of meteorological parameters such as rain and wind was more evident in 212Pb than in 214Bi concentrations. The 212Pb average annual concentration was 0.090 +/- 0.060 Bq/m3 with daily mean concentration varying from 0.013 to 0.333 Bq/m3.  相似文献   

15.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   

16.
Radon concentration measurements in atmosphere were taken in years from 1997 to 1999 in Milan and at pre-alpine sites located north of Lombardy. In this paper the results of measuring campaigns and a comparison of radon levels observed in the hilly area north of the town and on the pre-Alps are reported. The general criteria of the measurements and the interpretative models of radon concentration are presented. The Lake Maggiore area shows evidence of a great nocturnal stability and frequent formation of Nocturnal Stable Layer. The peculiar findings in the high altitude stations confirm the use of radon as an indicator of atmospheric dispersion of pollutants in an area with complex orography. The afternoon minimum values are concordant for the different stations: this implies a remixing in afternoon hours over the whole area investigated.  相似文献   

17.
In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The (222)Rn levels monitored inside the cave ranges from 186 Bq m(-3) to 7120 Bq m(-3), with an annual average of 3562 Bq m(-3). In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated.  相似文献   

18.
Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.  相似文献   

19.
The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.  相似文献   

20.
7Be是研究大气科学与地球化学的核元素之一,对研究短期过程的地表土壤颗粒迁移具有较大价值。为了解南京地区利用7Be进行土壤侵蚀示踪研究的合适时机,于2010年1月~2011年12月收集南京地区各月的7Be沉降样品,经实验室化学实验处理和γ谱仪测量,计算7Be沉降通量,并分析7Be大气沉降的季节性变化趋势。结果表明:南京地区平均7Be沉降量为1 62178 Bq/(m2·a),沉降通量为066~1449 Bq/(m2·d),平均沉降通量为444 Bq/(m2·d);7Be沉降通量的季节变化呈现双峰型趋势,冬末春初和夏季是两个高值区;7Be沉降的а值冬春季较大,夏季最低;降雨量大小与沉降量存在明显的正相关  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号