首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Over the last fifty years, almost half of the steppe rangeland in the Central Anatolian Region of Turkey (CAR) has been converted to cropland without an equivalent reduction in grazing animals. This shift has led to heavy grazing pressure on rangeland vegetation. A study was initiated in June 2003 using 6 multiscale Modified-Whittaker plots to determine differences in plant composition between areas that have not been grazed in 27 years with neighboring grazed plant communities. A total of 113 plant species were identified in the study area with the ungrazed plots containing 32 plants more than the grazed plots. The major species were Astragalus acicularis, Bromus tomentellus, Festuca valesiaca, Genista albida, Globularia orientalis, Poa bulbosa, and Thymus spyleus ssp rosulans. Grazing impacts on forbs were more pronounced than for grasses and shrubs. Based on Jaccard’s index, there was only a 37% similarity of plant species between the two treatments. Our study led to four generalizations about the current grazing regime and long-term exclosures in the steppe rangeland around the study area: (1) exclosures will increase species richness, (2) heavy grazing may have removed some plant species, (3) complete protection from grazing for a prolonged period of time after a long history of grazing disturbance may not lead to an increase in desirable plant species with a concomitant improvement in range condition, and (4) research needs to be conducted to determine how these rangelands can be improved.  相似文献   

2.
Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities (P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities (P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance (A = 0.112) and composition varied between community groups (P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.  相似文献   

3.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrush communities with intact understory vegetation. We compared vegetation and soil nutrient concentrations in mowed and undisturbed reference plots in Wyoming big sagebrush plant communities at eight sites for three years post-treatment. Mowing generally did not increase perennial herbaceous vegetation cover, density, or biomass production (P > 0.05). Annual forbs and exotic annual grasses were generally greater in the mowed compared to the reference treatment (P < 0.05). By the third year post-treatment annual forb and annual grass biomass production was more than nine and sevenfold higher in the mowed than reference treatment, respectively. Our results imply that the application of mowing treatments in Wyoming big sagebrush plant communities does not increase perennial herbaceous vegetation, but may increase the risk that exotic annual grasses will dominate the herbaceous vegetation. We suggest that mowing Wyoming big sagebrush communities with intact understories does not produce the expected benefits. However, the applicability of our results to Wyoming big sagebrush communities with greater sagebrush cover and/or degraded understories needs to be evaluated.  相似文献   

4.
Great Basin Land Management Planning Using Ecological Modeling   总被引:1,自引:1,他引:0  
This report describes a land management modeling effort that analyzed potential impacts of proposed actions under an updated Bureau of Land Management Resource Management Plan that will guide management for 20 years on 4.6 million hectares in the Great Basin ecoregion of the United States. State-and-transition models that included vegetation data, fire histories, and many parameters (i.e., rates of succession, fire return intervals, outcomes of management actions, and invasion rates of native and nonnative invasive species) were developed through workshops with scientific experts and range management specialists. Alternative restoration scenarios included continuation of current management, full fire suppression, wildfire use in designated fire use zones, wildfire use in resilient vegetation types only, restoration with a tenfold budget increase, no restoration treatments, and no livestock grazing. Under all the scenarios, cover of vegetation states with native perennial understory declined and was replaced by tree-invaded and weed-dominated states. The greatest differences among alternative management scenarios resulted from the use of fire as a tool to maintain native understory. Among restoration scenarios, only the scenario assuming a tenfold budget increase had a more desirable outcome than the current management scenario. Removal of livestock alone had little effect on vegetation resilience. Rather, active restoration was required. The predictive power of the model was limited by current understanding of Great Basin vegetation dynamics and data needs including statistically valid monitoring of restoration treatments, invasiveness and invasibility, and fire histories. The authors suggest that such computer models can be useful tools for systematic analysis of potential impacts in land use planning. However, for a modeling effort to be productive, the management situation must be conducive to open communication among land management agencies and partner entities, including nonprofit organizations.  相似文献   

5.
The composition of the germinable seed bank was studied in four vegetation states of the Festuca pallescens grasslands in semiarid Patagonia during four years. The aim of this study was to test whether above-ground vegetation states resulting from grazing exclusion or different combinations of grazing and topography are reflected in different states of the germinable seed bank. The size of the total and dicot germinable seed bank was positively related to the total cover in each state. Dicots dominated all germinable seed bank states. Carex patagonica increased its cover as well as its germinable seed bank under grazing disturbance. Grazing did not reduce the germinable seed bank of perennial grasses in uplands where the grazing pressure is lower as compared with slopes. In slopes the germinable seed bank of perennial grasses was significantly reduced by grazing. A reduction of the length of the grazing period in late spring increases the germinable seed bank of perennial grasses both in upland and slope. These results are interpreted in the frame of a model of management techniques where grazing exclusion during late spring and late summer increases the seed bank of the perennial grasses and promotes their establishment in uplands. The artificial addition of seeds of perennial grasses and the manipulation of the soil surface in order to increase "safe sites" appear as management alternatives that deserve further evaluation to improve plant reestablishment in slopes.  相似文献   

6.
In a previous article, Beschta et al. (Environ Manag 51(2):474–491, 2013) argue that grazing by large ungulates (both native and domestic) should be eliminated or greatly reduced on western public lands to reduce potential climate change impacts. The authors did not present a balanced synthesis of the scientific literature, and their publication is more of an opinion article. Their conclusions do not reflect the complexities associated with herbivore grazing. Because grazing is a complex ecological process, synthesis of the scientific literature can be a challenge. Legacy effects of uncontrolled grazing during the homestead era further complicate analysis of current grazing impacts. Interactions of climate change and grazing will depend on the specific situation. For example, increasing atmospheric CO2 and temperatures may increase accumulation of fine fuels (primarily grasses) and thus increase wildfire risk. Prescribed grazing by livestock is one of the few management tools available for reducing fine fuel accumulation. While there are certainly points on the landscape where herbivore impacts can be identified, there are also vast grazed areas where impacts are minimal. Broad scale reduction of domestic and wild herbivores to help native plant communities cope with climate change will be unnecessary because over the past 20–50 years land managers have actively sought to bring populations of native and domestic herbivores in balance with the potential of vegetation and soils. To cope with a changing climate, land managers will need access to all available vegetation management tools, including grazing.  相似文献   

7.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

8.
Since the mid-1980s, sagebrush rangelands in the Great Basin of the United States have experienced more frequent and larger wildfires. These fires affect livestock forage, the sagebrush/grasses/forbs mosaic that is important for many wildlife species (e.g., the greater sage grouse (Centrocercus urophasianus)), post-fire flammability and fire frequency. When a sagebrush, especially a Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young)), dominated area largely devoid of herbaceous perennials burns, it often transitions to an annual dominated and highly flammable plant community that thereafter excludes sagebrush and native perennials. Considerable effort is devoted to revegetating rangeland following fire, but to date there has been very little analysis of the factors that lead to the success of this revegetation. This paper utilizes a revegetation monitoring dataset to examine the densities of three key types of vegetation, specifically nonnative seeded grasses, nonnative seeded forbs, and native Wyoming big sagebrush, at several points in time following seeding. We find that unlike forbs, increasing the seeding rates for grasses does not appear to increase their density (at least for the sites and seeding rates we examined). Also, seeding Wyoming big sagebrush increases its density with time since fire. Seeding of grasses and forbs is less successful at locations that were dominated primarily by annual grasses (cheatgrass (Bromus tectorum L.)), and devoid of shrubs, prior to wildfire. This supports the hypothesis of a "closing window of opportunity" for seeding at locations that burned sagebrush for the first time in recent history.  相似文献   

9.
This work was undertaken to analyze nutrient contents of vegetation in an alpine meadow—Tungnath, North-West Himalaya, India. The study pertains to the uptake, transfer and release of four main macronutrients (organic carbon, total nitrogen, total potassium and total phosphorus) in grazed (exposed to extensive grazing by cattles) and ungrazed (grazing completely prohibited) communities. Mineral concentration was recorded higher for the ungrazed sites compared to the grazed sites, and maximum standing state of nutrients was found in roots. Belowground compartment (roots) contributed maximum share of mineral elements to soil. Litter nutrients release was low because of low microbial activity and continuous removal of phytomass. Observations reveal that there was very little amount of nutrient release from phytomass and vegetation in alpine are very poor source of mineral recycling. Low transfer rate of minerals from one compartment to other is adequate for greater amount of these minerals that are translocated back into the storage organs. A small proportion get removed through rain splash or through the removal of hay during grazing as relatively high release rates in ungrazed sites when compared to grazed sites was observed. This translocation can be considered as an important adaptation in alpine plants for survival during adverse environmental conditions, against all types of biotic pressures and also for regeneration in the forthcoming growing season.  相似文献   

10.
The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.  相似文献   

11.
Summary This study examines the effects of traditional sedentary grazing on soils in the southern guinea savanna ecosystem in Nigeria. The characteristics of soil in grazed plots are compared with those of similar soil in ungrazed plots in a savanna forest reserve in a nearby locality, in order to infer the effects of grazing. In the 0–10 cm layer of the soil, organic carbon, total nitrogen, exchangeable calcium, magnesium, potassium, sodium, cation exchange capacity and available phosphorus levels are significantly lower in the grazed plots. Decline in the organic carbon and nutrient levels of the grazed plots is mainly due to soil exposure resulting from grazing and savanna burning and the attendant processes of accelerated organic matter decomposition and nutrient loss through leaching and erosion. Low soil nutrient levels in the grazed plots will reduce primary production and hence the rate of herbage production for livestock. It could also lead to some adverse ecological changes in the ecosystem with the disappearance of certain plant species. The ecosystem consequently becomes less diverse and resilient as soil nutrient status becomes increasingly impoverished. It is suggested that herdsmen should practise rotational grazing and that livestock should be fed with a supplementary fodder of legumes, such as Gliricidia sepiumand Leucaena leucocephalaplanted in natural grazing areas, in order to minimise the problems of overgrazing which are frequently experienced during the dry season. Dr A.O. Aweto is a Senior Lecturer in Biogeography in the Department of Geography at the University of Ibadan, and Mr D.O. Adejumobi is a geographer serving on the Nigerian National Youth Service Corps.  相似文献   

12.
Effect of grazing and changing climate on vegetation composition of alpine pasture at Tungnath, Garhwal Himalaya was observed. Growth form pattern and phytosociological attributes were analyzed during 1988 under grazed (exposed to extensive grazing) and ungrazed (protected from grazing) conditions. These observations were repeated during 1998. It was observed that number of early growing species and long vegetative growth cycle species had increased at both sites in 1998 in comparison to 1988. Further, some species, viz., Poa alpina, Polygonum spp., Ranunculus hirtellus, Anemone spp., are predominantly found near the timberline-subalpine region. These species are less palatable and were present at both sites with higher dominance (TBC) and niche width in 1998 indicating wide distribution of the species along an altitudinal gradient. These observations indicated the migration of these species towards upper slopes of alpine. Species diversity was also higher after ten years. However, it is clear that climatic changes alone are not responsible for these vegetational shifts. In fact, human-induced changes are the main reason for habitat destruction and changes in vegetation composition of the alpine region of Garhwal Himalaya. Before final conclusions can be made, long-term studies on vegetation composition and changes are needed, especially in Himalayan region.  相似文献   

13.
National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon–juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon–juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.  相似文献   

14.
Domestic animals potentially affect the reproductive output of plants by direct removal of aboveground plant parts but also could alter the structure and fertility of the upper soil and the integrity of biological crusts through trampling. We asked whether sheep selectivity of plant patches along grazing paths could lead to negative changes in biological crusts and soil seed banks. We randomly selected ten floristically homogeneous vegetation stands distributed across an area (1250 ha) grazed by free ranging sheep. Vegetation stands were differently selected by sheep as estimated through sheep-collaring techniques combined with remote imagery mapping. At each stand, we extracted 15 paired cylindrical soil cores from biological crusts and from neighboring soil without crusts. We evaluated the crust cover enclosed in each core and incubated the soil samples at field capacity at alternating 10-18 °C during 24 months. We counted the emerged seedlings and identified them by species. Sheep selectivity along grazing paths was largest at mid-distances to the watering point of the paddock. Increasing sheep selectivity was associated with the reduction of the cover of biological crusts and the size and species number of the soil seed bank of preferred perennial grasses under biological crusts. The size of the soil seed bank of annual grasses was reduced with increasing sheep selectivity under both crust and no crust soil conditions. We did not detect changes in the soil seed banks of less- and non- preferred species (shrubs and forbs) related to sheep selectivity. Our findings highlight the negative effects of sheep selectivity on biological crusts and the soil seed bank of preferred plant species and the positive relationship between biological crusts and the size of the soil seed bank of perennial grasses. Accordingly, the state of conservation of biological crusts could be useful to assess the state of the soil seed banks of perennial grasses for monitoring, conservation and planning the sustainable management of grazing lands.  相似文献   

15.
Revegetation was studied on stockpiled serpentine substrate. The native vegetation surrounding the revegetation site is annual grassland. The seed mixture applied to both subsoil and topsoil plots was largely ineffective for revegetation. No growth occurred in the subsoil plots and most of the growth in the topsoil plots was from indigenous seed. Phosphate application (100 kg P ha–1 as NaH2PO4 · H2O) to the topsoil plots resulted in a significant increase in total above-ground productivity. Annual legumes (mostlyLotus subpinnatus Lag.) and, to a lesser degree,Plantago erecta Morris responded to the added phosphate with an increased above-ground productivity. Other annual forbs and annual grasses showed no significant response. The legumes also increased in abundance. Mycorrhizal root colonization forPlantago was not significantly affected by phosphate application, but was lower in this disturbed serpentine site compared to other undisturbed serpentine annual grassland sites nearby.  相似文献   

16.
Sustainable use of military training lands requires understanding and prediction of the effects of military vehicles on vegetation. We examined the initial impacts of an 8-wheeled, light armored vehicle (LAV) on grassland vegetation at Fort Lewis, Washington. The LAV drove replicate spiral paths at two starting velocities, 10.3 and 5.1 m s(-1). The disturbed width (width of ground impacted by the tires) increased as turning radius decreased, but was unaffected by vehicle velocity. An inverse-exponential model predicted disturbed width (r(2)=0.68) at all turning radii for both velocities combined. In low-velocity spirals, and for straight tracking (turning radius>40 m) and moderate turns (radius 20-40 m) in high-velocity spirals, all vegetation damage was imprint (plants flattened by wheels). During sharp (radius <20 m), high-velocity turns, most or all of the disturbed width was scraped free of surface vegetation and soil, which was piled to the outside of each tire track. Total plant cover (all species) was not affected by track curvature in low-velocity spirals, but decreased in the order straight tracking>moderate turns>sharp turns in high-velocity spirals. In low-velocity spirals, post-tracking cover of several plant growth forms (non-native species, perennial species, sod-forming grasses) was similar to pre-tracking cover, but in high-velocity spirals, post-tracking cover of these growth forms decreased in the order straight > or =moderate=sharp. Cover of native species and forbs decreased more in high- than in low-velocity spirals, but was unaffected by curvature. Pre- and post-tracking cover of annual species, bunchgrasses, and shrubs was < or =3%. The most severe vegetation damage caused by operation of wheeled LAVs on grasslands is associated with sharp, high-velocity turns.  相似文献   

17.
Extending livestock grazing to the steep slopes has led to unstable grazing systems in the East African Highlands, and new solutions and approaches are needed to ameliorate the current situation. This work was aimed at studying the effect of livestock grazing on plant attributes and hydrological properties. The study was conducted from 1996 to 2000 at the International Livestock Research Institute at Debre Ziet Research Station. Two sites were selected: one at 0–4% slope, and the other at 4–8% slope. The treatments were: (1) no grazing (control); (2) light grazing, 0.6 animal unit months per hectare (aum/ha); (3) moderate grazing, 1.8 aum/ha; (4) heavy grazing, 3.0 aum/ha; (5) very heavy grazing, 4.2 aum/ha; (6) initially plowed and continuously very heavily grazed, 4.2 aum/ha. The result showed that species richness, infiltration rate, bare ground, and soil loss significantly varied with grazing pressure. Species richness was higher in grazed plots compared to nongrazed plots. Biomass yield improved on heavily grazed plots as cow dung accumulated over years. Cynodon dactylon plant species persisted with livestock grazing pressure in both sites. Infiltration rate improved and soil erosion declined in all treatments after the first year.  相似文献   

18.
Artemisia tridentata Nutt.) habitat within the Idaho Army National Guard Orchard Training Area in southwestern Idaho. The purpose of this study was to determine the short-term (1–2 years) influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat. The two types of tank tracks studied were divots (area where one track has been stopped or slowed to make a sharp turn) and straight-line tracks. Divots generally had a stronger influence on vegetation and microphytic crusts than did straight-line tracks. Tank tracks increased cover of bare ground, litter, and exotic annuals, and reduced cover of vegetation, perennial native grasses, sagebrush, and microphytic crusts. Increased bare ground and reduced cover of vegetation and microphytic crusts caused by tank tracks increase the potential for soil erosion and may reduce ecosystem productivity. Reduced sagebrush cover caused by tank tracks may reduce habitat quality for rodents. Tank tracks may also facilitate the invasion of exotic annuals into sagebrush habitat, increasing the potential for wildfire and subsequent habitat degradation. Thus, creation of divots and movement through sagebrush habitat by tanks should be minimized.  相似文献   

19.
Although the distribution and structure of pinyon-juiper woodlands in the southwestern United States are thought to be the result of historic fluctuations in regional climatic conditions, more recent increases in the areal extent, tree density, soil erosion rates and loss of understory plant diversity are attributed to heavy grazing by domestic livestock and interruption of the natural fire regime. Prior to 1850, many areas currently occupied by high-density pinyon-juniper woodlands, with their degraded soils and depauperate understories, were very likely savannas dominated by native grasses and forbs and containing sparse tree cover scattered across the landscape. The purpose of this study was to evaluate the effectiveness of mechanical overstory reduction and three slash treatment alternatives (removal, clustering and scattering) followed by prescribed fire as techniques for restoring grassland savannas from degraded woodlands. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry and erosion rates were measured prior to and for two years following experimental treatment in a degraded pinyon-juniper woodland in central New Mexico. Treatment resulted in a significant increase in the cover of native grasses and, to a lesser degree, forbs and shrubs. Plant species richness and diversity increased most on sites where slash was either completely removed or scattered to serve as a mulch. Although no changes in soil chemistry or plant nutrient status were observed, understory biomass increased over 200% for all harvest treatments and was significantly greater than controls. While treatment increased litter cover and decreased soil exposure, this improvement did not significantly affect soil loss rates. Even though all slash treatment alternatives increased the cover and biomass of native grasses, scattering slash across the site to serve as a mulch appears most beneficial to improving plant species diversity and conserving site resources.  相似文献   

20.
An evaluation of woodland reclamation on strip-mined lands in east Texas   总被引:1,自引:0,他引:1  
We compared the composition and structural characteristics of reclaimed and native woody plant communities near Fairfield, Texas, to evaluate the effectiveness of woodland reclamation 3–11 years since establishment. Species composition, foliage density, canopy cover, and woody plant densities were recorded in plots randomly placed along transects bisecting blocks of reclaimed and native woodlands. During summer, vertical foliage densities at heights ≤2 m were similar among native and reclaimed areas. Foliage density and canopy cover declined in reclaimed blocks during winter, but remained relatively constant in native woodlands, where evergreens and vines were more common. Canopy cover was absent in reclaimed woodlands <6 years old but increased with age in 6 to 11-year-old blocks. These data indicated that approximately 27 years will be needed before trees in reclaimed blocks will achieve the stature of canopy trees in native woodlands. Reclaimed woodlands contained different woody plant species and had lower woody stem densities compared to native woodlands. On average, stem densities in reclaimed blocks were six times lower than densities in native woodlands. Comparisons with planting records indicate that survival of most commonly planted woody species was low. Only green ash(Fraxinus pennsylvanica), Russian oliver(Elaeagnus commutata), smooth sumac(Rhus glabra), and redbud(Cercis canadensis) had estimated survival rates >50%. Reclamation procedures used at Big Brown Mine (BBM) during 1981–1988 have not produced woodland habitats with vegetative characteristics comparable to premined woodlands and may not be providing the cover needed to encourage use by certain wildlife species. Procedures for improving woodland reclamation are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号