首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

2.
Vehicular traffic contributes significantly to the aerosol number concentrations at the local scale by emitting primary soot particles and forming secondary nucleated nanoparticles. Because of their potential health effects, more attention is paid to the traffic induced aerosol number distributions.The aim of this work is to explain the phenomenology leading to the formation and the evolution of the aerosol number distributions in the vicinity of a vehicle exhaust using numerical modelling. The emissions are representative of those of a light-duty diesel truck without a diesel particle filter. The atmospheric flow is modelled with a computational fluid dynamics (CFD) code to describe the dispersion of pollutants at the local scale. The CFD code, coupled to a modal aerosol model (MAM) describing the aerosol dynamics, is used to model the tailpipe plume of a vehicle with emissions corresponding to urban driving conditions. On the basis of available measurements in Schauer et al. (1999), three surrogate species are chosen to treat the semi-volatile organic compounds in the emissions.The model simulates the formation of the aerosol distribution in the exhaust plume of a vehicle as follows. After emission to the atmosphere, particles are formed by nucleation of sulphuric acid and water vapour depending strongly on the thermodynamic state of the atmosphere and on the dilution conditions. The semi-volatile organic compounds are critical for the rapid growth of nanoparticles through condensation. The semi-volatile organic compounds are also important for the evolution of primary soot particles and can contribute substantially to their chemical composition.The most influential parameters for particle formation are the sulphur fuel content, the semi-volatile organic emissions and also the mass and initial diameter of the soot particles emitted. The model is able to take into account the complex competition between nucleation, condensation and dilution, as well as the interactions among the different aerosol modes. This type of model is a useful tool to better understand the dynamics leading to the formation of traffic induced aerosol distributions. However, some key issues such as the turbulence in the exhaust plume and in the wake of the car, the magnitude and chemical composition of semi-volatile organic emissions and the possible nucleation of organic species need to be investigated further to improve our understanding of ultrafine particle formation.  相似文献   

3.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   

4.
The properties of condensed polydisperse sulfuric acid aerosols in industrial flue gas were calculated. The condensed aqueous acid volume concentration, composition, droplet size distributions and condensed plume opacity were calculated for typical flue gas compositions, condensation nucleus size distributions and flue gas dilution ratios. The assumed initial flue gas at 170°C contained 0.035 g/acm fly ash particles, 1-20% water vapor, and 1-50 ppmv sulfuric acid vapor. The assumed gas cooling mechanism was by adiabatlc dilution with cool ambient air. Polydisperse droplet growth was calculated by assuming equal surface area increase for each particle. The calculations show that sulfuric acid condensation should have minimal effect on particles larger than 1 μm, but will form a high concentration of particles in the narrow size range of 0.05-0.5 μm diameter. Depending on the initial sulfuric acid and water vapor concentrations in the hot flue gas, the calculated maximum plume opacity following gas dilution ranged from 5% to 25%, compared to 4% for the dry condensation nucleus aerosol.  相似文献   

5.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

6.
Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point approximately 11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

7.
Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load condition.  相似文献   

8.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

9.
The size and chemical composition of individual diesel exhaust particles were measured in order to determine unique mass spectral signatures that can be used to identify particle sources in future ambient studies. The exhaust emissions from seven in-use heavy-duty diesel vehicles (HDDVs) operating on a chassis dynamometer were passed through a dilution tunnel and residence chamber and analyzed in real time by aerosol time-of-flight mass spectrometry (ATOFMS). Seven distinct particle types describe the majority of particles emitted by HDDVs and were emitted by all seven vehicles. The dominant chemical types originated from unburned lubricant oil, and the contributions of the various types varied with particle size and driving conditions. A comparison of light-duty vehicle (LDV) exhaust particles with the HDDV signatures provide insight into the challenges associated with developing an accurate source apportionment technique and possible ways of how they may be overcome.  相似文献   

10.
ABSTRACT

Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10–30 nm) that is 2–4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4 2-components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

11.
Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10-30 nm) that is 2-4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4(2-) components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   

12.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

13.
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

14.
Epidemiological and experimental studies have underlined that exposure to particulate matter (PM) leads mainly to airway inflammation, but the roles of particle size and chemical composition associated to such adverse health outcomes need to be better investigated. This study was performed to validate novel strategies of particle sampling, recovery and cell exposure in order to evaluate the pro-inflammatory potential of fine and ultrafine particles from a fractionated aerosol. Samplings of Paris background aerosols using 13-stage low pressure impactors (0.03-10 microm) gave bimodal mass distributions with an accumulation mode centered on a median diameter of 0.42 microm and a coarse one on 3.25 microm. PM 1 accounted for 70% and PM 0.1 for 12% of PM 10. The latter mainly comprised carbon-chained aggregates. The development of an efficient and reproducible method to recover fine (PM 1-0.1) and ultrafine (PM 0.1-0.03) particulate matter has permitted experimental comparison of the impact of such particles on human bronchial epithelial cells (HBECs). In this study we have compared the relative effects of fine and ultrafine particles at non-cytotoxic concentrations over 24h on the production of the pro-inflammatory cytokine GM-CSF by HBECs. Combining two cell exposure strategies to the size-fraction particles according to either their proportion (isovolume exposure) or their quantity in the aerosol (isomass exposure), we showed that both ultrafine and fine particles induced a concentration-dependent GM-CSF release by HBECs which is significant from 1 microg cm(-2). In conclusion, short duration samplings using 13-stage impactors enable to obtain size-resolved PM in sufficient quantities to carry out toxicological investigations. These findings are promising in view to conduct a more intensive study joining chemical and toxicological assays.  相似文献   

15.
Uncertainties still remain in the size and number emission of nucleation and soot mode particles from diesel vehicles and understanding of the nucleation process under different ambient conditions. Particle emission measurements were carried out with a EURO-3 certified European diesel passenger car running on low (<10 ppm S) and high (310 ppm S) sulfur fuel. A newly developed in situ diluter which sampled exhaust continuously from the tailpipe and diluted in two steps by a factor of 500–6000 was employed to study nucleation particle formation under well-controlled temperature and humidity conditions. Particle emission measurements were also carried out with a mobile laboratory chasing the exhaust plume of the same vehicle in summer (19–25 °C) and winter (9 °C), with no significant difference of the nucleation or soot mode particle emission found. The particle size distributions compared well with those measured in the laboratory with the same vehicle under identical driving conditions. Simple nucleation and coagulation calculations were compared with the atmospheric and laboratory measurements. It was shown that the primary dilution step had the largest impact on the nucleation mode formation, while the model overpredicted the influence of temperature and humidity. No nucleation mode particles were observed running the diesel vehicle on low (<10 ppm S) fuel.  相似文献   

16.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

17.
Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h(-1) and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources.  相似文献   

18.
Zhou J  Wang T  Huang Y  Mao T  Zhong N 《Chemosphere》2005,61(6):792-799
PAHs in five-stage size segregated aerosol particles were investigated in 2003 at urban and suburban sites of Beijing. The total concentration of 17 PAHs ranged between 0.84 and 152 ng m(-3), with an average of 116 ng m(-3), in urban area were 1.1-6.6 times higher than those measured in suburban area. It suggested a serious pollution level of PAHs in Beijing. PAHs concentrations increased with decreasing the ambient temperature. Approximately 68.4-84.7% of PAHs were adsorbed on particles having aerodynamic diameter 2.0 microm. Nearly bimodal distribution was found for PAHs with two and three rings, more than four rings PAHs, however, followed unimodal distribution. The overall mass median diameter (MMD) for PAHs decreased with increasing molecular weight. Diagnostic ratios and normalized distribution of PAHs indicated that the PAHs in aerosol particles were mainly derived from fossil fuel combustion. Coal combustion for domestic heating was probably major contributor to the higher PAHs loading in winter, whereas PAHs in other seasons displayed characteristic of mixed source of gasoline and diesel vehicle exhaust. Biomass burning and road dust are minor contributors to the PAHs composition of these aerosol particles. Except for source emission, other factors, such as meteorological condition, photochemical decay, and transportation from source to the receptor site, should to be involved in the generation of the observed patterns.  相似文献   

19.
The hygroscopic properties of the organic fraction of aerosols are poorly understood. The ability of organic aerosols to absorb water as a function of relative humidity (RH) was examined using data collected during the 1999 Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). (On average, organics accounted for 22% of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) mass). Hourly RH exceeded 80% only 3.5% of the time and averaged 44%. BRAVO aerosol chemical composition and dry particle size distributions were used to estimate PM2.5 light scattering (Bsp) at low and high ambient RH. Liquid water growth associated with inorganic species was sufficient to account for measured Bsp for RH between 70 and 95%.  相似文献   

20.
Duan J  Bi X  Tan J  Sheng G  Fu J 《Chemosphere》2007,67(3):614-622
Size distribution aerosol samples were collected at an urban location of Guangzhou in four seasons of 2003-2004 by a MOUDI (Micro-orifice Uniform Deposit Impactor). The particle loading (PM10: 80-397 microg m(-3)) was comparable with some other Asia cities; however, much higher than that of Western Europe and North America. Polycyclic aromatic hydrocarbons (PAHs) were measured by gas chromatography with mass selective detector (GC-MS). Seasonal effects on the size distribution of PAHs are presented. Bimode (accumulation and coarse mode) and unimode (accumulation mode) distributions were observed for low-molecule-weight and high-molecule-weight PAHs. A slight shift to larger particles was found for the accumulation mode in autumn and winter, compared with that of spring and summer. One explanation is that the longer aging process of PAHs in autumn and winter would result in volatilization from finer particles followed by condensation onto coarser particles. Another is there was mixing process of local emission with long-range transported aerosol in autumn and winter. The relative higher value of IcdP/(BghiP+IcdP) and lower value of BghiP/BeP in winter also give evidences to the mixing process. The level of PAHs concentration has been much elevated in recent years. This can be attributed to the fast growth of motor vehicle and energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号