首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
蒸气入侵暴露情景下土壤气筛选值推导与比较   总被引:1,自引:1,他引:0       下载免费PDF全文
采用J&E模型推导了典型蒸气入侵暴露情形下土壤气中ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值,并与US EPA(美国国家环境保护局)及美国各州的颁布值进行比较. 结果表明,具有致癌效应的苯、氯仿相同暴露情形下的筛选值低于非致癌效应的甲苯、1,1-二氯乙烯3~4个数量级,表明VOCs污染场地应重点关注致癌性污染物. 其中,浅层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为9.6×102、2.7×102、1.1×107、4.0×105μg/m3,工商业暴露情形下分别为4.6×103、1.3×103、6.3×107、2.4×106μg/m3. 深层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为1.1×103、3.1×102、1.2×107、4.5×105μg/m3,工商业暴露情形下分别为5.2×103、1.5×103、7.1×107、2.7×106μg/m3. 筛选值大小的决定因素包括污染物的室内允许浓度、土壤气衰减系数及建筑物参数. 浅层与深层土壤气中各污染物筛选值无明显差异,但与US EPA及美国各州的颁布值差异较大,这主要是由污染物室内允许浓度及衰减系数确定方法的不同所致. 浅层土壤气平均衰减系数为2.3×10-4,与深层土壤气平均衰减系数(2.0×10-4)无明显差异,但均低于US EPA对应经验值〔0.1(浅层)、0.01(深层)〕2~3个数量级. 在不考虑吸附及生物降解时,污染源上方清洁土壤对污染物的衰减作用不明显.   相似文献   

2.
为分析车内苯系物污染对不同性别驾乘人员的致癌风险和非致癌风险,对65辆轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)进行评价;提出车内苯的基本致癌风险浓度与危险致癌风险浓度概念及其计算公式,并与国内外相关标准中苯系物浓度标准限值进行对比分析. 结果表明:65辆轿车内空气中苯系物Hfz(综合非致癌指数)的最大值为0.44,低于US EPA(美国国家环境保护局)规定的非致癌风险基本值(1),对乘客与司机均不存在非致癌风险;但苯对司机Hza(致癌指数)的平均值为129.3×10-6,致癌风险较高;苯对男性乘客、女性乘客、男性司机与女性司机的Cwx(危险致癌风险浓度)分别为450.0、470.0、67.5和70.4 μg/m3. GB/T 27630—2011《乘用车内空气质量评价指南》中苯浓度标准限值对司机Hza的平均值为1.59×10-4,大于US EPA规定的苯致癌风险危险值(1×10-4),构成致癌危害;苯系物浓度标准限值对司机Hfz的平均值为1.15,构成非致癌危害. 轿车内空气中ρ(苯)、ρ(甲苯)、ρ(乙苯)和ρ(二甲苯)的合理限值分别为0.068、1.000、1.350和1.350 mg/m3.   相似文献   

3.
为研究滹沱河冲洪积扇地下水中VOCs(volatile organic compounds,挥发性有机物)的污染现状,于2014年9月在滹沱河冲洪积扇地区采集44个地下水样品,采用吹扫捕集-气相色谱-质谱法分析了25种VOCs的质量浓度,并对其分布特征和健康风险进行了讨论. 结果表明,研究区44个采样点均有VOCs检出,其中氯仿、二氯甲烷检出率为100%. 检出的VOCs中,ρ(氯仿)平均值最高,范围为15.4~52 195.9 ng/L;其次为ρ(四氯化碳)(nd~17 145.8 ng/L). VOCs的分布与工业布局密切相关,受制药企业排污影响,ρ(氯仿)、ρ(苯乙烯)、ρ(苯)、ρ(甲苯)、ρ(乙苯)、ρ(二甲苯)等均在G2-1采样点最高;而在石家庄石化炼制产业密集区域,地下水中检出的VOCs种类、检出频次及含量均较高. 研究显示,研究区地下水VOCs的非致癌风险指数介于1.8×10-5~4.7×10-2之间,均远小于1;G2-22采样点地下水VOCs的致癌风险指数最高,为1.1×10-5,处于可接受水平,但四氯化碳的污染现状值得关注.   相似文献   

4.
突发性环境污染事件由于具有污染物浓度高、不易察觉、常规处理难度大等特点,因此环境健康风险较高. 以饮用水受到突发性苯污染为例,模拟研究了苯随着自来水进入居民家庭后,分别通过饮用、皮肤接触和呼吸等暴露途径对人体造成的健康风险. 结果表明,3种暴露途径下,皮肤接触暴露的健康风险最高,当自来水中ρ(苯)为300.00和10.00 μg/L时,健康风险分别为4.09×10-3和1.19×10-4. 饮用暴露的健康风险最低,当自来水中ρ(苯)为300.00和10.00 μg/L时,健康风险最大值为4.61×10-6,最小值趋近于0,这主要是由于苯极易挥发,而我国居民饮用煮沸后的开水,开水中苯的残留量较低. 经过3种暴露途径进入人体的苯的日均综合暴露健康风险最大值为4.33×10-3,最小值为1.26×10-4,超过了US EPA(美国国家环境保护局)人体健康风险建议最大值(1×10-4).   相似文献   

5.
乘用车内空气质量健康风险评估   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究我国乘用车内空气的污染现状,采用二次热解析-毛细管气相色谱/质谱联用及高效液相色谱法,测定了16个品牌的市售新车车内空气中BTEX(苯、甲苯、乙苯和二甲苯)、苯乙烯、甲醛、乙醛和丙烯醛等8种污染物质量浓度,并对其健康风险进行了评估. 结果表明:8种污染物的质量浓度除乙醛外均低于GB/T 27630—2011《乘用车内空气质量评价指南》中的标准限值,ρ(苯)、ρ(甲苯)、ρ(乙苯)、ρ(二甲苯)、ρ(苯乙烯)、ρ(甲醛)、ρ(乙醛)和ρ(丙烯醛)范围分别为3.00~73.00、69.00~798.00、18.00~469.75、46.00~1 296.42、12.00~46.00、19.00~72.00、43.29~323.00和5.20~7.60 μg/m3. 致癌物质苯、甲醛和甲苯的质量浓度最高值分别为GB/T 27630—2011各自标准限值的66.36%、72.00%和72.55%;二甲苯质量浓度点离散程度较小,分布集中,其平均值为GB/T 27630—2011标准限值(1 500 μg/m3)的11.86%;ρ(乙苯)最大值为其标准限值的1/3左右;而ρ(苯乙烯)和ρ(丙烯醛)远低于各自标准限值. ρ(苯)和ρ(甲醛)对驾乘人员的健康均可能造成致癌风险. 对于男性职业司机,苯和甲醛平均浓度的致癌风险分别为US EPA(美国国家环境保护局)规定的致癌风险基准值(1×10-6)的18.86和60.67倍,而二者对女性职业司机的致癌风险仅比男性降低了12.53%;对于男性普通驾乘人员,苯和甲醛平均浓度的致癌风险分别为基准值的2.83和9.10倍,女性略低于男性. 二甲苯平均浓度的非致癌风险是US EPA规定的基准HI(非致癌风险指数,取1)的1.78倍. 研究表明,为降低车内空气中有害物质对车内乘员的健康危害,需要采用环保的内饰材料,改善车内空气质量.   相似文献   

6.
李雷  李红  王学中  张新民  温冲 《环境科学》2013,34(12):4558-4564
于2009年11月5~9日,采用在线监测方法对广州市中心城区环境空气中31种VOCs物种进行了观测,对其浓度水平与变化特征、组成与来源、化学反应活性进行了分析,并利用国际公认的健康风险评价方法对VOCs的健康风险进行了评价.结果表明,31种VOCs物种的平均质量浓度为114.51μg·m-3(范围为29.42~546.06μg·m-3),烷烃和芳香烃是含量最为丰富的组分;31种VOCs浓度之和及烷烃、烯烃、芳香烃3类化合物的各组分浓度之和都呈现出早晚高,中午低的日变化特征.机动车尾气排放是研究区环境空气中VOCs的主要来源,同时汽油、液化石油气的挥发以及涂料和溶剂的挥发也是其重要来源.研究区VOCs气团对臭氧生成潜势贡献率最大的是芳香烃(42.5%)和烯烃(38.6%);甲苯、反-2-丁烯、间/对二甲苯、正丁烷、1,3,5-三甲苯等是VOCs中的关键活性组分.机动车尾气排放、汽油蒸发是导致研究区环境空气中臭氧形成的重要VOCs排放源.健康风险评价结果表明,己烷、1,3-丁二烯和BTEX对人体的非致癌风险(HQ)在3.95E-03~2.45E-01之间,对暴露人群不存在非致癌风险;1,3-丁二烯、苯的致癌风险值(RISK)分别为1.47E-05、5.34E-05,对暴露人群存在潜在的致癌风险.本研究结果与国内其它部分城市环境空气中苯系物健康风险评价结果的比较研究发现,我国城市环境空气中苯对暴露人群存在着较大的致癌风险,因此,我国有必要采取措施严格控制环境空气中苯的污染水平,尽早研究并制定环境空气中苯的环境基准和标准.  相似文献   

7.
在南京富贵山隧道开展机动车排放的挥发性有机物(VOCs)对环境及人群健康的影响研究,对VOCs浓度水平与变化特征、组成与化学反应活性进行了分析,并通过美国环境保护局(US EPA)的健康风险评价模型对VOCs的健康风险进行了评价.结果表明,隧道进口与出口空气中共检测出93种物质,隧道进口处样品的总VOCs浓度(87.28±7.08)μg/m3;隧道出口处总VOCs浓度(225.63±59.19)μg/m3.隧道出口检测到的烷烃和芳香烃这两类物质浓度比进口浓度高.隧道进口与出口处的VOCs总臭氧生成潜势为101.48μg O3/m3和402.01μg O3/m3.健康风险评价结果表明,隧道进口处14种主要VOCs的非致癌风险危害商值(HQ)在8.07×10-5~2.66×10-1之间,而在隧道出口处的HQ范围为3.18×10-4~2.92×10-1.隧道进口与出口处的VOCs的非致癌风险危险指数(HI)均小于1,非致癌风险值在安全范围之内.但1,3-丁二烯、氯仿、四氯化碳、苯和1,1,2-三氯乙烷的致癌风险较大,对人体健康具有明显的影响.  相似文献   

8.
机动车排放中挥发性有机污染物的组成及其特征研究   总被引:29,自引:7,他引:22       下载免费PDF全文
应用大气采样罐采样技术和色谱-质谱联用(GC-MS)技术,对广州市环境空气、交通道路、城市隧道和汽车尾气中55种挥发性有机物(VOCs)的组分及其质量浓度水平进行测试,并研究了广州市机动车VOCs排放特征.结果表明:①城区环境空气质量本底观测点白云山摩星岭的大气样品中ρ(VOCs)数量级为10-1~101 μg/m3,其中烷烃类、烯烃类、乙炔和单环芳香烃类平均质量浓度分别为13.97,15.15,6.16和43.27 μg/m3.市区主要交通干道(东风中路、环市中路和新港西路)旁空气样品的ρ(VOCs)数量级为101~102μg/m3,其中烷烃类、烯烃类、乙炔和单环芳香烃类最高质量浓度相应比环境本底质量浓度高约20~30倍.②在怠速条件下检测了摩托车、出租车、大客车、轻型卡车、小轿车和公交车等6种新车和在用车型VOCs的排放,其组成和质量浓度因机动车类型、功率和燃料不同而不同,一般功率越大VOCs排放越严重,ρ(VOCs)数量级大致为10-1~103mg/m3,为交通干道空气ρ(VOCs)的1 000倍以上.其中LPG车具有最高的烷烃类、烯烃类和乙炔排放量,测试样品的ρ(VOCs)分别为815.79~2 001.66,696.84~1 799.10和53.87~416.13 mg/m3.而柴油车排放的VOCs远远低于其他燃料车型.③通过对广州珠江隧道连续48 h的监测,研究了隧道内交通特征、微气象特征和VOCs组成及其质量浓度水平,能够计算出广州机动车55种VOCs化合物的平均排放因子.   相似文献   

9.
以某焦化类大型污染场地苯污染土壤为例,针对S1(单一用地)、S2(多种用地)、S3(考虑建筑设计)3种暴露情景,分析不同情景下场地土壤中苯污染的暴露途径并进行健康风险评估. S1情景下的苯致癌风险为9.2×10-5. 在S2情景下,规划的5个分区中仅E区(居住用地)苯的致癌风险(4.3×10-4)高于可接受水平(1.0×10-6), 考虑到各功能区累积致癌风险,则E区高污染可导致其他4个功能区〔A区(商业用地)、B区(城市绿地)、C区(居住用地)、D区(商业用地)〕的累积致癌风险(分别为6.5×10-6、2.2×10-6、7.3×10-6、2.2×10-5)均高于可接受水平,表明单一用地会低估污染物聚集区的风险. 在S3情景下,A、B、C区土壤中苯的致癌风险(分别为1.2×10-7、2.7×10-7、2.5×10-7)均未超过可接受致癌风险水平;D区由于污染土壤被完全清除,不存在健康风险;E区开发后由剩余土壤产生的苯致癌风险为2.7×10-5,D区受E区影响产生的累积致癌风险(1.5×10-6)高于可接受水平. 进一步分析表明,场地的用地规划与建筑设计等因素将影响风险评估中关键参数(包括污染源浓度、水文地质参数、暴露参数、受体参数等)的取值,从而影响风险评估结果;此外,各功能区之间的风险影响也不容忽视. 对于大型污染场地,结合用地规划进行暴露情景分析与风险评估更为科学合理.   相似文献   

10.
冬季大气中苯系物污染特征及人体暴露水平分析   总被引:5,自引:5,他引:0  
2007年冬季对乌鲁木齐市空气中苯系物(BTX)进行了网格布点监测,并用气相色谱仪进行样品分析. 结果表明:冬季大气中苯(B)、甲苯(T)和二甲苯(X)的质量浓度分别为5.62~20.57,3.40~122.82和2.20~129.15 μg/m3. 与欧洲标准相比,该地区ρ(苯)较高,且部分地区高于欧洲控制标准;而ρ(甲苯)和ρ(二甲苯)较低,达到欧洲目标限值水平. 苯系物质量浓度和空间分布特点较显著,ρ(甲苯)与ρ(二甲苯)的空间分布较为一致,但与ρ(苯)的分布特点不同. 最后通过对苯系物的人口加权大气污染暴露水平进行分析可知,乌鲁木齐市ρ(苯),ρ(甲苯)和ρ(二甲苯)的污染暴露水平在空间分布上较为均匀,但人口密度空间分布不均匀,故与ρ(苯)分布没有显著的相关性. 城区的ρ(苯),ρ(甲苯)和ρ(二甲苯)的人口加权平均值均略低于全市人口加权平均值,说明虽然城区人口密度较高,但其ρ(苯),ρ(甲苯)和ρ(二甲苯)的人口加权污染暴露水平相对较低.   相似文献   

11.
宁波市大气挥发性有机物污染特征及关键活性组分   总被引:1,自引:0,他引:1       下载免费PDF全文
于2010年冬、春、秋三季,在宁波市3个采样点(市区、镇海站、北仑站)进行大气VOCs(挥发性有机物)样品的采集与分析,并对36种大气VOCs组分进行测量,分析宁波市大气VOCs组分组成及其时空分布特征. 用各组分的·OH反应速率表征其化学反应活性,以识别宁波市大气VOCs的关键活性组分. 结果表明:宁波市ρ(VOCs)(36种大气VOCs组分的平均质量浓度)在3个季节的平均值为198.2 μg/m3,主要成分为烷烃(48.6%)、芳香烃(33.6%)、烯烃(17.8%). ρ(VOCs)的季节变化表现为冬季(298.5 μg/m3)>秋季(174.1 μg/m3)>春季(122.0 μg/m3),空间上表现为市区(161.3 μg/m3)<镇海(225.0 μg/m3)<北仑(208.2 μg/m3). 宁波市大气VOCs的化学组成相对稳定,·OH平均反应速率常数和乙烯相当,总化学反应活性较强;对化学反应活性贡献最大的是烯烃,其体积混合比约占VOCs体积混合比的22%,但对VOCs化学反应活性的贡献达64%以上;关键活性组分为1-丁烯、反-2-丁烯、间,对-二甲苯、乙烯和戊烯.   相似文献   

12.
挥发性有机物(VOCs)是大气中1类具有较大健康危害的污染物,同时也是大气中二次有机气溶胶和臭氧生成的重要前体物。首次使用搭载了单光子电离质谱仪(SPI-MS)的走航观测车,在2018年3月对南京江北化工园区环境空气中的VOCs进行了为期4 d的走航观测。观测期间,总VOCs的平均浓度为133.3 μg/m3,夜间平均浓度(143.6 μg/m3)较日间(123.1 μg/m3)偏高,工作日平均浓度(226.7 μg/m3)远高于周末(39.9 μg/m3)。同时还获得了高时间和高空间分辨率的VOCs分布特征,并详细分析了走航路线途经的3个重点区域(南钢-南化、扬子石化和化工大道区域)的特征污染物、浓度变化及主要排放源(企业)。总体来看,VOCs组成以烷烃和芳香烃浓度占比最大(均为31%),其次为烯烃(25%)和卤代烃(13%);但对臭氧生成潜势的贡献,则是烯烃最大(56%),其次为芳香烃、烷烃和卤代烃,分别占32%、9%和3%。该结果为化工园区VOCs的减排管理及区域臭氧污染控制提供参考。  相似文献   

13.
北京市道路空气中挥发性有机物时空分布规律   总被引:6,自引:4,他引:2  
为研究城市交通道路空气中挥发性有机化合物(VOCs)的污染状况、变化规律和不同道路类型的浓度特点,于2008年5月—2009年7月对北京市3种典型道路(街道峡谷、交叉道路和开阔道路)进行空气质量监测. 采用气相色谱法测定道路空气中非甲烷烃(NMHCs)、苯系物(苯、甲苯和二甲苯)的质量浓度. 结果表明:北京市道路空气中挥发性有机化合物污染比较严重,其中ρ(NMHCs)日均值为1.0~3.3 mg/m3,ρ(苯系物)日均值为8.8~80.0 μg/m3. 污染物浓度日变化多呈现双峰型. 选取1,4,7和10月为不同季节的代表月份,7月的ρ(NMHCs)和ρ(苯系物)均最高,10月最低. 3种典型道路中,街道峡谷的污染物质量浓度高于另外2种道路. 道路附近的挥发性有机物质量浓度主要受到机动车排放、气象条件和地形条件等的影响.   相似文献   

14.
餐饮油烟中挥发性有机物风险评估   总被引:15,自引:4,他引:11       下载免费PDF全文
餐饮油烟中的挥发性有机物(VOCs)通过参与大气化学反应、气味效应、毒性效应影响室内外环境及人体健康. 分别于冬夏两季(6月和12月)用餐高峰时段对天津某中型餐馆排放油烟中VOCs进行实地监测,通过气相色谱-质谱联用仪(GC-MS)分析得出厨房油烟VOCs中主要污染物为乙醇和丙烷;餐馆油烟去除效率不足30%,对环境影响显著;醛类是影响油烟排放源臭气指数的主要污染物,油烟平均嗅阈值与丁醛嗅阈值相当;厨房排放油烟中含氧有机物和烯烃是其光化学活性的主要贡献者,油烟单位数浓度活性为3.8×10-12,与正己烷相当;厨房油烟中1,3-丁二烯、苯的致癌风险分别为1.3×10-3和1.6×10-5,存在较大的人群潜在致癌风险.   相似文献   

15.
为估算重庆市夏秋季VOCs(挥发性有机物)对O3和SOA(二次有机气溶胶)的生成潜势,利用在线GC-MS/FID在2015年8月22日-9月23日对重庆市区点和郊区点VOCs开展了为期一个月的实时观测,获得市区点和郊区点$ \varphi $(TVOCs)(总挥发性有机物)分别为41.35×10-9和22.72×10-9,其中市区点以烷烃(35.2%)和烯炔烃(25.2%)为主,郊区点以含氧挥发性有机物(oxygenated volatile organic compounds,OVOCs)(30.6%)和烷烃(26.0%)为主.结合最大增量反应活性量化市区点和郊区点VOCs的OFPs(臭氧生成潜势)分别为149.11×10-9和71.09×10-9,市区点OFPs最大的是乙烯、丙烯、甲苯、C8和C9的芳香烃等,郊区点OFPs最大的VOCs是丙烯醛、异戊二烯和甲基乙烯基酮.结合气溶胶生成系数量化郊区点和市区点VOCs对SOA的生成贡献分别为0.36和1.26 μg/m3,相比国内其余城市VOCs的SOAP(二次有机气溶胶生成潜势)较小,主要以甲基环己烷、正壬烷、正葵烷和十一烷等高碳烷烃,以及甲苯、苯、二甲苯和乙苯等芳香烃的SOAP为主.研究显示,控制烯炔烃和芳香烃的浓度有助于控制重庆市O3的生成,控制高碳烷烃和芳香烃则有助于控制重庆市SOA的生成.   相似文献   

16.
为研究煤化工产业园区挥发性有机物(VOCs)污染特征及其对大气细颗粒物(PM2.5)和臭氧(O3)的贡献,本研究于2021年夏季利用气相色谱/质谱联用仪在某大型煤化工产业园区开展了环境空气115种VOCs的在线监测研究,分析了VOCs的浓度水平、组成特征、日变化特征、潜在来源及其对O3和PM2.5中二次有机气溶胶(SOA)的生成贡献. 结果表明:①观测期间,园区站点VOCs的平均体积分数为89.32×10?9±50.57×10?9,显著高于该园区所在城市的城区站点VOCs浓度水平. ②含氧VOCs (OVOCs)是该园区VOCs的主要特征污染物,占总VOCs体积分数的48.2%,乙醇、丙醛和甲醛是体积分数排名前三的物种. ③VOCs的臭氧生成潜势(OFP)为595.64 μg/m3,各组分对O3贡献潜势的大小表现为OVOCs>烯烃>芳香烃>烷烃>卤代烃>含硫VOC>炔烃. OFP排名前十的物种均为OVOCs、烯烃和芳香烃,其中丙醛对OFP的贡献占比最高,占总OFP的22.2%. ④间/对-二甲苯、邻二甲苯和乙苯等苯系物对二次有机气溶胶生成潜势(SOAFP)的贡献突出,其中间/对-二甲苯的SOAFP最大,占总SOAFP的29.6%,主导了SOA生成. 研究显示,煤化工产业园区中丙醛和甲醛等OVOCs、顺-2-丁烯等烯烃以及间/对-二甲苯与邻二甲苯等芳香烃对大气复合污染贡献较大,是开展PM2.5和O3污染协同控制重点关注的物种.   相似文献   

17.
The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS).Air sampling and analysis was conducted under the requirement of USEPA Method TO-17.A room-size,environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature,humidity,horizontal and vertical airflow velocity,and background VOCs concentration).Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940μg/m~3 in the new vehicle A,1240μg/m~3 in used vehicle B,and 132μg/m~3 in used vehicle C),toluene,xylene,some aromatic compounds,and various C_7-C_(12) alkanes were among the predominant VOC species in all three vehicles tested.In addition,tetramethyl succinonitrile,possibly derived from foam cushions was detected in vehicle B.The types and quantities of VOCs varied considerably according to various kinds of factors,such as,vehicle age, vehicle model,temperature,air exchange rate,and environment airflow velocity.For example,if the airflow velocity increases from 0.1 m/s to 0.7 m/s,the vehicle's air exchange rate increases from 0.15 h~(-1) to 0.67 h~(-1),and in-vehicle TVOC concentration decreases from 1780 to 1201μg/m~3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号