首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt−1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2–20 Mg ha−1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha−1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens’ activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.  相似文献   

2.
Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal content of the original sludge. Composting of sewage sludge with natural zeolite (clinoptilolite) can enhance its quality and suitability for agricultural use. However, the dewatered anaerobically stabilized primary sewage sludge (DASPSS) contained a low concentration of humic substances (almost 2%), and the addition of the waste paper was necessary in order to produce a good soil conditioner with high concentrations of humics. The final results showed that the compost produced from DASPSS and 40-50% w/w of waste paper was a good soil fertilizer. Finally, in order to estimate the metal leachability of the final compost product, the generalized acid neutralization Capacity (GANC) procedure was used, and it was found that by increasing the leachate pH, the heavy metal concentration decreased. The application of the sequential chemical extraction indicated that metals were bound to the residual fraction characterized as a stabilize fractions.  相似文献   

3.
Potential benefits and risks of land application of sewage sludge   总被引:5,自引:0,他引:5  
Sewage sludge, also referred as biosolids, is a byproduct of sewage treatment processes. Land application of sewage sludge is one of the important disposal alternatives. Characteristics of sewage sludge depend upon the quality of sewage and type of treatment processes followed. Being rich in organic and inorganic plant nutrients, sewage sludge may substitute for fertilizer, but availability of potential toxic metals often restricts its uses. Sludge amendment to the soil modifies its physico-chemical and biological properties. Crop yield in adequately sludge-amended soil is generally more than that of well-fertilized controls. Bioavailability of metals increases in sludge amended soil at excessive rates of application for many years. Plants differ in their abilities to absorb sludge-derived metals from the soil. The purpose of this paper is to review the available information on various aspects of sewage sludge application on soil fertility and consequent effects on plant production to explore the possibility of exploiting this byproduct for agronomy and horticulture.  相似文献   

4.
Solidification of sewage sludge has been actively investigated in Japan and Europe since the 1970s. Most previous studies have focused on only the mechanical aspects of potential alternative cover soil made using sewage. Most solidification processes, however, suffer from severe odor problems because of the high alkalinity of the material. The objectives of this study are to develop a cost-effective solidifying agent for conversion of sewage sludge in order to reduce the odor generation, as an alternative to the conventional cement lime-based solidifying agent, and to demonstrate its applicability in the field experimentally. Field test results showed compressive strength well above the 1.0 kg/cm2 criterion for landfill cover soil in Korea. Also, the permeability coefficient was far below the 5 × 10−5 cm/s design criterion for landfill cover soil. Even in harsh weather conditions, such as in winter and summer, the compressive strength was increased. In addition, the permeability was decreased from 3.45 × 10−6 cm/s to 4.78 × 10−7 cm/s, and from 2.27 × 10−6 cm/s to 3.62 × 10−7 cm/s, at 7 days after placement in January and August, respectively. It can therefore be postulated that the proposed solidification process is an appropriate alternative for production of daily landfill cover material. Concerning the odor problem, 5 min of mixing of sewage with TS103, one of the proprietary agents used in this work, was sufficient to suppress the concentration of ammonia emitted to below 10 ppm. Considering all of these experimental field test results, it is expected that the proposed method could be a competitive approach for manufacture of alternative landfill cover material.  相似文献   

5.
A rotary drum dryer having an internal rotating body was designed and tested in this study. It was shown that the developed dryer is effective for drying sewage sludge. The best operating conditions in the dryer were low energy input and almost 10% moisture content. The conditions are 255°C for the rotary drum temperature, 17 min for the sludge residence time, and 55 kg/m3 h for the dryer load. Under these conditions, the drying efficiency was 84.8%. The average diameter of dried sludge was less than 8 mm, and the weight reduction rate was 80%. Parametric screening studies achieved the following results. The drying efficiency increased with the increase of the internal temperature and the sludge residence time in the rotary drum, while the drying efficiency decreased when increasing the dryer load. In addition, it was shown that NH3 and CO2 were the primary components released from the sewage sludge drying process. The amounts of both of these components increased when the rotary drum temperature was increased.  相似文献   

6.
Prior to vermicompost application to the soils, there is a need to determine the heavy metal concentrations in the final vermicomposts. Acute toxicity on Eisenia fetida for copper (Cu) and cadmium (Cd) were conducted by artificial soils tests. The dosage of interest is typically the median lethal concentration (LC50) that will kill 50 % of the population of organisms within the test period. The dry artificial soil is pre-moistened 1 or 2 days before the test by adding deionized water to obtain approximately half of the required final water content of 40–60 % of the maximum water holding capacity. The 14-day LC50 values (95 % confidence interval) for Cu and Cd were 530 (450–624) and 1118 (988–1265) mg kg?1, respectively. The vermicomposting was designed to evaluate the effects of earthworm activity on heavy metals in sewage sludge. Compared with the sludge before vermicomposting by Eisenia fetida, the results are as follows: (1) water content, the pH value and organic matter content decreased, (2) total nitrogen content increased, total phosphorus content and total potassium content decreased, (3) available nitrogen concentration, available phosphorus content increased, and (4) the total content of five metals (Cu, Ni, Cd, Pb and Zn) decreased, and the bioaccumulation factor shows that vermicomposting can efficiently remove heavy metals. Therefore, it can be concluded that the soil use of sludge of the Wastewater Treatment Plant in Huaibei is feasible.  相似文献   

7.
Limitations relating to permissible standards of undesirable substances in sewage sludges make it necessary to optimize sludge properties. One of the methods to achieve the above goal is the use of a composting process. The aim of this study was to determine the toxicity of composts obtained from sewage sludges composted for 76 days. Dewatered sewage sludges were collected from the four wastewater treatment plants located in the south-eastern part of Poland (Kraśnik, Lublin, Biłgoraj and Zamość). The sludges were mixed with standard OECD soil at doses of 6% and 24%. Phytotoxkit (with Lepidium sativum) and ostracodtoxkit (with Heterocypris incongruens) tests were used to evaluate toxicity. The results obtained showed different toxicity of sewage sludge depending on the sludge dose and bioassay used. H. incongruens mortality ranged from 0% to 90% and depended on the sewage sludge. The greatest inhibition of test organism growth was noted at a level of 55%. In the case of the Phytotoxkit test, a clearly negative influence of the sewage sludges on seed germination was observed at a dose of 24%. Root growth inhibition was noted in the case of most sewage sludges and was at a level of 20–100%. The influence of the composting on the toxicity of biosolids also showed various trends depending on the sludge type. Sludge composting often resulted in a toxicity increase in relation to H. incongruens. In the case of plants (Phytotoxkit test) and most sewage sludges, however, the composting process influenced both the seed germination and root growth in a positive way.  相似文献   

8.
Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures--gasification, gas cleaning and electric and thermal power generation--are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.  相似文献   

9.
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than 6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts, dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually showed reduced tar generation.  相似文献   

10.
Most sludge has historically been disposed of in landfills and by ocean dumping but, because of its heavy metal content, this will be totally banned in Korea starting in 2012, based on the London Dumping Convention. Therefore, treatment and disposal methods that are environmentally friendlily are urgently required. The recycling of sewage sludge is a good treatment method for solving sludge problems in an environmentally friendly way. In this study, physical and environmental tests were conducted to evaluate the feasibility of using the by-products of thermal hydrolysis of sewage sludge as barrier layer materials in the final cover systems for landfills. In addition, testing methods for freezing-thawing (KS F 2332) and wetting-drying (KS F 2330) cycles were conducted to assess the effects of cold and hot soil climates starting from pavement. These tests yielded positive results for alternative materials for the barrier layer in a final cover system for a landfill.  相似文献   

11.
The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg?1, and contaminated Cambisol with total Cd 6.16 mg kg?1. Decrease of extractable Cd (0.01 mol l?1 CaCl2) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l?1 CH3COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.  相似文献   

12.
The investigation was carried out in a 2 year experiment to evaluate the benefits and hazards of the use of composted sewage sludge as a restoration agent for the soil of the nursery forest intended for growing Pinus sylvestris seedlings. The grey forest soil (Haplic Greyzem) was amended with compost at the 25, 50, 75, 100, 150 and 175 t ha(-1) application rates on a dry matter basis. The organic matter content increased with the increase in sludge amendment as well as the metal content. However, the concentrations of individual metals were below the current limits established for Russia and European countries. Sludge amendments enhanced the germination and decreased the mortality of the seedlings. The effects were more obvious for the soil with the highest sludge treatment. The beneficial effects on the biomass of seedlings and the height of the shoots as well as on the length of the roots of the pine seedlings were greater in plots with the highest rates of composted sludge. The application of composted sludge to soil was followed by an increase in microbial biomass and to a lesser extent in basal respiration. In the absence of any detrimental effect on microorganisms, this study lends support to using composted sewage sludge as the organo-mineral fertilizer for the soil of nursery forest.  相似文献   

13.
The effect of liming and ash treatment on pools, fluxes and concentrations of major solutes was investigated at two forestedsites (Norway spruce) in S. Sweden. One site was treated 15 yrprior to sampling (Hasslöv-Hs; dolomite: 3.45 and 8.75 t ha-1) and the other 4 yr before (Horröd-Hd; dolomite: 3.25 t ha-1; wood ash: 4.28 t ha-1). Effects of limingwere most pronounced in the O horizon solutions where higher pH,elevated Ca (120–700 M) and Mg (50–600 M) were observed as compared to control plots. The impact on the mineralsoil was more moderate. Soil solution concentrations were combined with modelled hydrological flow to calculate mass flows,which largely followed the trends of the solution composition. Liming also resulted in large increases of both exchangeable Caand Mg as well as effective cation exchange capacity (CECE;2–5 times the controls). The base saturation (BS%) was raised to 60–100% in the O horizon while in the mineral soil elevated values were only seen at the Hs site (20–60%; down to 10–15 cm depth for 8.75 t ha-1). Ash treatment did notaffect either the soil solution nor the exchangeable pool to thesame extent as lime. In general, the impact at the Hd site was less pronounced especially in the mineral soil, which might be due to shorter treatment time (4 vs. 15 yr) and also differentthickness of the O horizon. Budget calculations for Ca and Mg originating from the lime showed that a major part of the Ca (40–100%) was retained in the top 30 cm of the soil, of which30–95% was present in the O horizon. The mobility of Mg wasgreater and it was estimated that a significant part had been leached from the profile (30 and 50 cm depth) after 15 yr. Increased mass flows of NO3 - due to nitrification resulting from liming at the Hs site were calculated in the range120–350 mmol m-2 yr-1 (or 1.2–3.5 kmol ha-1 yr-1). There was significant leaching of Al (25–60 mmol m-2 yr-1), of which about 70% was inorganic, in thelower B horizon at both sites with no influence of liming.  相似文献   

14.
The large quantity of wash water used in the electroplating and etching process in the manufacturing of printed circuit boards (PCBs) contains a high level of heavy metal ions (Cu++, Zn++, Ni++, Cr+++, Pb++). These potentially toxic ions are removed from the wash water effluent through a polyelectrolyte flocculation and hydroxide precipitation process during which a hydroxide sediment sludge rich in metal ions and polymers is generated. This sediment sludge possesses some unique characteristics and properties in terms of composition, fine particle size distribution, high specific surface area, and a tendency to agglomerate after drying. Direct disposal of this classified “special waste” (Department of Environment of Northern Ireland, The Special Waste Regulations, Northern Ireland, 1998) at landfill sites may cause serious soil and underground water pollution through a gradual ionic leaching process. This paper describes an experimental investigation, exploratory in nature, which employs microwave radiation for detoxification of the sediment sludge through microwave heating, drying and metal ion immobilization within the sediment solids. The effectiveness of microwave assisted binding and immobilization of the metal ions within the sediment solids was studied in conjunction with an evaluation of microwave energy efficiency in comparison to the more conventional convective heating and drying processes. Given a sufficient amount of microwave radiation, leaching of Cu2+ and Pb2+ was reduced by 2700% and 1080%, respectively, over a period of 12 weeks, and further leaching was not detectable within six months at simulated local landfill aqueous conditions. This paper also attempts, through experimental observation, to add to the very limited understanding of the complex interactions and binding of free metal ions with the polymeric materials and metal hydroxides under the influence of an electromagnetic field. The high specific surface of the sediment solids and their adsorption properties were further explored and characterized in a study of adsorption of reactive dyes by the microwave processed solids.  相似文献   

15.
Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19 days, 53 ± 26 Nml/g of volatile solids as compared to municipal sewage sludge, 84 ± 24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.  相似文献   

16.
In this work, an estimate of the elevation of airborne lead concentrations via the lead solder contained in domestic electricity installations and an investigation into the effects of human exposure were conducted using a simulation method. The elevation of airborne lead concentrations due to incineration was calculated to be 0.001 µg/m3 maximum. The simulation results of the calculations indicated that blood lead concentrations could reach as high as 10−5 µg/dl. These concentrations could primarily be attributed to the inhalation of airborne lead particles. In addition, we discuss the influences of lead solder disposal on the ecosystem via soil and water.  相似文献   

17.
Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting.  相似文献   

18.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   

19.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

20.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号