首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硝化细菌富集技术分析及方法研究   总被引:19,自引:0,他引:19  
在分析硝化细菌特性的基础上,研究探讨了利用提高基质浓度来富集硝化细菌的可行性,并比较了不同培养方式及富集前后活性污泥中硝化细菌的浓度。试验结果表明,当温度为30℃、pH=6.5~8.0、DO>2mg/L时,经过12~13周的富集培养,污泥中硝化菌浓度可达2.0×18~8(MPN)/g(MLSS),是未经富集污泥中硝化菌浓度的12.5~20倍。  相似文献   

2.
为了给废水生物脱氮提供新思路。采用活性污泥厌氧消化的上清液进行硝化菌富集培养的实验研究。在一定的条件下,采用更代富集培养的方法,培养了五代硝化菌,并分别在人工配水中加入接种污泥和富集培养污泥进行对比实验,结果表明富集培养污泥的硝化效率比接种污泥高10%,证明上清液可以用来富集培养硝化菌。  相似文献   

3.
反硝化聚磷菌的富集及富集污泥活性研究   总被引:2,自引:0,他引:2  
依据DPB原理,利用SBR动态反应器和静态释/聚磷装置。以A2/O厌氧段污泥为种泥,进行以硝酸盐为电子受体的反硝化聚磷菌的富集,并对富集有反硝化聚磷菌的污泥进行了反硝化聚磷活性性能考察。结果表明,利用硝酸盐为电子受体的反硝化聚磷菌存在于A2/O厌氧段污泥中,反硝化聚磷菌占总聚磷菌的比例为23%,该种污泥可作为反硝化聚磷工艺的种泥;由于常规的聚磷菌被淘汰聚磷菌的数量由6.8×107个/mL减少到1.1×103个/mL,但通过选择和富集聚磷菌总数由1.1×103个/mL增加到8.2×104个/mL,且反硝化聚磷菌占聚磷菌总数的比例也由23%提高到94%,磷酸盐去除率由最初的9.86%上升到95.2%,出水磷酸盐的浓度为0.79mg/L;通过改变进水中不同磷酸盐浓度验证体系处于稳定状态。  相似文献   

4.
本文模拟夏季高温,考察了温度(30~45℃)和氨氮容积负荷对污水处理厂好氧池活性污泥硝化功能及微生物群落的影响,同时探讨中温富集硝化污泥高温驯化前后用于强化受高温冲击的生物处理系统的硝化效果.结果表明,在30~40℃水温下好氧池活性污泥的氨氮去除效果保持在90%以上,硝化菌含量也逐步升高至4. 55%;当水温升至45℃时氨氮去除率和硝化菌含量均分别降至40%和1. 97%.为快速恢复受夏季高温冲击的生物系统,将中温富集硝化污泥在40℃下驯化61 d后,获得硝化活性为(60±5) mg·(L·h)-1的硝化污泥,考察中温富集硝化污泥驯化前后对受高温冲击的生物处理系统的强化效果,发现驯化后的中温富集硝化污泥只需投加5%(体积分数)即可提高10%的氨氮去除率,而未驯化的则需要投加10%(体积分数).上述结果表明,中温富集硝化污泥经驯化后能更好地用于强化受高温冲击的生物处理系统的硝化功能.  相似文献   

5.
硝化污泥富集及其强化高氨氮冲击的中试研究   总被引:3,自引:3,他引:0  
采用膜生物反应器(MBR)为富集装置,以预处理后的城市污水外加硫酸铵为培养基质,研究了温度、溶解氧、氨氮容积负荷、游离氨(FA)和游离亚硝酸(FNA)等因子对硝化污泥富集的影响并核算富集成本,同时考察了该硝化污泥用于强化废水生物系统抗氨氮冲击能力的效果.结果表明,MBR中富集培养182 d后,污泥的硝化活性达到98.41 mg·(L·h)-1,比启动时提高约30倍,硝化菌产量为14.96 mg·(L·d)-1,富集1 kg硝化污泥成本为3.52元.温度是影响硝化污泥活性的主要因素,低于15.0℃时污泥的硝化活性降至最高值的三分之一,降低氨氮容积负荷在一定程度上可以减轻低温的影响.此外,溶解氧不足时,亚硝氮积累减缓了硝化菌富集速度.把上述富集的硝化污泥应用于受高氨氮负荷冲击的生物处理中试系统中,投加2%硝化污泥后,系统对氨氮的去除率由29.4%提高至88.4%;此后该系统在水温降至(13.3±1.6)℃时,氨氮去除率也能高达99.0%.上述中试结果显示了硝化污泥富集后用于生物强化废水生物处理系统、提高其硝化功能启动与恢复速度的可能性.  相似文献   

6.
本文模拟夏季高温,考察了温度(30~45°C)和氨氮容积负荷对污水处理厂好氧池活性污泥硝化功能及微生物群落的影响,同时探讨中温富集硝化污泥高温驯化前后用于强化受高温冲击的生物处理系统的硝化效果。结果表明,在30~40°C水温下好氧池活性污泥的氨氮去除效果保持在90%以上,硝化菌含量也逐步升高至4.55%;当水温升至45°C时氨氮去除率和硝化菌含量均分别降至40%和1.97%。为快速恢复受夏季高温冲击的生物系统,将中温富集硝化污泥在40°C下驯化61 d后,获得硝化活性为(60±5)mg·(L·h)-1的硝化污泥,考察中温富集硝化污泥驯化前后对受高温冲击的生物处理系统的强化效果,发现驯化后的中温富集硝化污泥只需投加5%(体积比)即可提高10%的氨氮去除率,而未驯化的则需要投加10%(体积比)。上述结果表明,中温富集硝化污泥经驯化后能更好用于强化受高温冲击的生物处理系统的硝化功能。  相似文献   

7.
本文介绍了在单污泥系统中选择和富集反硝化聚磷菌的国内外研究进展,对不同研究者提出的选择和富集反硝化聚磷菌的方法进行了分析和评价,并提出将反硝化聚磷菌与移动床生物膜反应器工艺结合起来,在序批式移动床生物膜反应器悬浮填料上选择和富集反硝化聚磷菌,进一步认识了反硝化聚磷菌的生化特征,使其成为反应器中优势菌群,以及该工艺今后的研究重点。  相似文献   

8.
游离氨对稳定生物亚硝化的影响分析   总被引:12,自引:0,他引:12  
在稳定亚硝化期亚硝化菌的竞争优势形成以后,它对FA的变化不是非常敏感,游离氨的作用主要在于提供了一个有利于亚硝化的竞争环境。稳定亚硝化期的两类硝化菌所表现出的反应活性与系统中两类硝化菌在FA抑制环境中竞争所形成的优劣态势关系紧密。将稳定亚硝化期的平均FA浓度维持在7~10mg/L左右是合适的,FA大于15mg/L以后会对亚硝化菌形成抑制。亚硝化系统中即使通过各种途径抑制硝化菌的活性,也不能使其被完全抑制或消除、洗出。当抑制作用减弱或环境条件适宜时硝化菌很快就能恢复活性,杆状絮体是良好亚硝化现象的特征污泥相。  相似文献   

9.
活性污泥法低温运行中的污泥膨胀主要是由丝状菌引起,微丝菌(M.Parvicella)则是污泥膨胀中的优势丝状菌.针对微孔曝气变速氧化沟中试系统中因低温引起的污泥严重膨胀及其污泥硝化能力降低的问题,采取增大曝气量快速培养污泥硝化菌含量,再逐渐增加A:O比为0,0.1,0.5,1.1,1.8提高反硝化能力,从而恢复污泥脱氮能力.在恢复期间,污泥絮体中的疏水性M.Parvicella附着于反硝化产生气体上,在选择池和氧化沟表面形成浮泥,对其进行去除,以减少絮体中丝状菌含量,提高硝化菌含量及其硝化能力.同时对不同微丝菌含量的污泥絮体(沟内混合液和表面浮泥)的硝化和反硝化速率进行测定,结果表明微丝菌含量高的活性污泥其硝化能力较弱,而快速反硝化能力较强,则对慢速和内源反硝化影响不大.进一步证明M.Parvicella也是除了DO浓度,水温和负荷之外影响活性污泥硝化能力和污泥沉降性能的重要因素之一.  相似文献   

10.
污水生物脱氮系统中的硝化菌生长慢、易流失,人为添加N-酰基高丝氨酸内酯类(AHLs)群体感应信号分子,可能会强化硝化菌生物膜的形成,从而有助于富集硝化菌,提高硝化效率.本研究以采用低碳氮比(C∶N=8)人工配置废水驯化100 d后的硝化活性污泥为菌源,人为外加2μmol·L-1的AHLs信号分子(C8-HSL或OHHL),分析了两种信号分子对硝化污泥静态附着、氨氮动态降解及微生物生长速率的影响.研究结果表明,信号分子OHHL能快速强化微生物附着生长,且能在一定时间内持续发挥作用,有助于硝化生物膜的形成;而信号分子C8-HSL则能明显提高硝化污泥的氨氮降解速率;两种信号分子都能促进硝化污泥生长,提高微生物生长速率,增强硝化污泥活性,加速硝化污泥生物量累积.人为添加C8-HSL或OHHL信号分子,不仅能保证氨氮降解效率还能降低出水硝氮浓度,减轻氮污染.  相似文献   

11.
为了实现将水体中F-浓度降至1mg/L以下的目标,采用多步除氟法,优化药剂投加顺序及剂量控制成本.对除氟尾水进行脱氮除磷处理,并利用16S r RNA高通量测序技术分析微生物群落结构.结果表明,在最优除氟方案下能将F-浓度从119.73~138.56mg/L降至0.33mg/L,除氟成本为6.13元/t.除氟尾水的硝化和反硝化负荷分别达到0.12和0.13kg/(m3·d).硝化过程从批次八实现稳定的短程硝化,平均亚硝酸盐积累率(NAR)>80%,这由前期游离氨(FA)抑制和后期游离亚硝酸(FNA)抑制造成.脱氮过程中观察到反硝化除磷作用,磷的吸收率可达到84.10%~89.75%.高通量测序结果表明,经过20个批次的驯化,污泥微生物群落结构发生显著变化.驯化污泥中好氧反硝化菌(Paracoccus和Pseudomonas)、异养反硝化菌(Flavobacterium和Thauera)和反硝化聚磷菌(Paracoccus、Pseudomonas和Thauera)得到富集.  相似文献   

12.
采用普通好氧活性污泥驯化培养启动亚硝化反应器,探索了在实验室条件下,亚硝化反应的最适宜条件。结果表明.在温度(T)为35℃,pH值为7.5左右,初始污泥浓度0.7g/L时,控制较高的初始进水氨氨浓度和较低的DO浓度,有利于亚硝化反应的启动:驯化后,反应器内氨氮处理效果良好,即使进水氨氮浓度高达2400mg/L时,氨氮去除率也能达到95%以上;在实验中,亚硝化的最适宜条件为,温度:29~35℃.pH值:7.0~8.0。同时.实验结果表明,在一定范围内,溶解氧浓度越高,亚硝化反应速率越快:C/N比过高会严重抑制亚硝化反应。  相似文献   

13.
吴锦华  韦朝海  李平 《环境科学》2008,29(1):109-113
以经过驯化的苯胺降解菌和硝化菌作为菌源,在悬浮污泥间歇反应器中及三相流化床反应器中分别考察了间歇及连续进水2种工艺条件下苯胺对硝化过程的毒性抑制作用.结果表明,苯胺对悬浮污泥间歇反应器中的硝化菌有较强的抑制作用,仅当苯胺浓度低于3 mg/L时,硝化菌的活性才能逐渐恢复,且恢复的时间随着苯胺的初始浓度的增高而延长.实验结果还显示,适宜的水力停留时间(HRT)是保证三相流化床中苯胺成功降解及硝化脱氮的关键工艺条件.当进水苯胺浓度为200 mg/L,HRT为10 h时,反应液中苯胺浓度为6.58 mg/L,硝化率可达84.95%,由此表明膜硝化反应器抵抗苯胺毒性抑制的能力强于悬浮污泥硝化反应器,在工业上采用三相流化床膜硝化反应器对含毒性有机物的废水进行硝化脱氮处理是有实际应用价值的.  相似文献   

14.
硝化污泥强化培养及投加作为一种传统生物脱氮突发事故的应急手段,具有十分重要的实际意义。该试验通过条件控制对硝化污泥强化培养,并且对其性能进行分析。在氨氮浓度为45 mg/L,当C/N为2.2∶1,p H为8.0,水力停留时间(HRT)27 h时,氨氮去除率稳定在90%以上,实现硝化菌富集。分别在30、40、50、60 mg/L 4个氨氮浓度梯度下进行硝化速率和硝化菌个数分析。结果表明,氨氮浓度为40 mg/L时硝化速率最高,达到0.749 4 mg/(g·h),其对应硝化菌的数量最多,其中亚硝化细菌的个数为2.85×106MPN/g MLSS,硝化细菌的个数为1.35×105MPN/g MLSS。  相似文献   

15.
好氧膜生物反应器的硝化性能研究   总被引:2,自引:0,他引:2  
以含有高浓度氨氮的垃圾渗滤液为对象,针对好氧膜生物反应器的硝化性能进行了研究。结果表明:当进水氨氮<1000mg/L和负荷<1.5kgNH4+-N/m3d时,氨氮去除率保持在80%~99.7%之间,表明好氧MBR具有良好的硝化性能;硝酸菌在进水氨氮浓度>600mg/L时受到了抑制,而亚硝酸菌在进水氨氮浓度>1200mg/L时才受到抑制;在试验过程中,MBR污泥经历了由以异养细菌为主到自养细菌为主的转型过程。以硝化菌为主的污泥具有良好的沉淀性能,污泥的SV和SVI分别稳定在20%~30%之间和40~70mL/g之间。  相似文献   

16.
低C/N城市污水亚硝酸型硝化试验研究   总被引:1,自引:0,他引:1  
对低C/N城市污水进行亚硝酸型硝化的可行性、稳定性进行了研究,具体研究了系统的启动培养、稳定亚硝化、污泥毒害、短暂亚硝化、污泥适应等5个阶段及污泥的适应性问题。低C/N城市污水可实现稳定的亚硝酸型硝化,其亚硝化率最高可达90%。试验中合理确定反应周期的首要因素是系统出水NH4+-N的浓度至少达到50%降解率,其次是出水中NOx-NN应主要以NO2-N为主。根据泥龄维持所能维持的MLSS浓度确定系统泥龄在合理范围。系统不排泥和较长泥龄将不能通过排泥,将系统中硝化菌"洗出",硝化菌也会最终适应亚硝酸型硝化的环境因素,从而导致亚硝酸型硝化现象的不可逆消失。杆状污泥絮体为亚硝酸型硝化现象的特征污泥相。  相似文献   

17.
聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化   总被引:15,自引:6,他引:9  
采用特殊运行方式的厌氧-好氧SBR系统(厌氧后排水),以乙酸钠为有机基质成功富集了聚糖菌颗粒污泥.聚糖菌颗粒污泥厌氧-好氧批式实验表明,聚糖菌颗粒污泥具有较强的SND能力,TOC/N分别为5.0,4.0,2.8时,SND效率分别96.4%、95.3%及96.2%,而周期总氮去除效率随着碳氮比降低而降低,分别为66.0%、61.2%及56.3%.通过对周期氨氮、亚硝酸盐氮、硝酸盐氮、TOC以及胞内糖原、PHB变化的测定分析,证明聚糖菌颗粒污泥SND过程中,污泥以厌氧阶段储存于胞内的多聚物PHB作为反硝化碳源,并且反硝化聚糖菌是系统中反硝化能力的来源.与溶解性基质相比,PHB的降解速率相对较低,因此在SND过程中,反硝化可以与硝化保持相近的速率,从而有助于获得良好的SND效果.  相似文献   

18.
王春英 《环境科技》2009,22(6):24-27
为了进一步了解反硝化聚磷菌(DPB)污泥质量浓度(MLSS)对反硝化除磷过程的影响,进行一系列厌氧、缺氧模拟试验.研究考察DPB污泥的MLSS对厌氧释磷、缺氧反硝化吸磷的影响。结果表明:MLSS越高,释、吸磷速率及反硝化速率越高;MLSS对释、吸磷比速率和反硝化比速率的影响较小;厌氧总释磷量由污水中可利用COD的多少决定,DPB污泥的MLSS只影响到达释磷平衡的时间:污水中含氮量偏低引起反硝化吸磷段NO3^-不足时,DPB污泥厌氧释磷量高于反硝化吸磷量.MLSS越高经缺氧反硝化吸磷处理后水中含磷量越高。  相似文献   

19.
不同恢复方式对硝化颗粒污泥活性的影响   总被引:1,自引:1,他引:0  
郭秀丽  高大文  卢健聪 《环境科学》2013,34(10):3981-3985
利用SBR反应器培养的成熟好氧硝化颗粒污泥,进行了硝化颗粒污泥临界活性以及不同氨氮浓度及曝气时间对储存的好氧硝化颗粒污泥活性恢复的影响研究.结果表明,储存不同时间的硝化菌活性(SOUR,O2/VSS)差别较大,储存前硝化颗粒污泥硝化菌SOUR为13.15 mg·(g·h)-1,储存20 d的硝化菌SOUR下降了1.26 mg·(g·h)-1,恢复运行了5个周期,氨氮去除率已经达到95%以上,恢复后活性为13.87 mg·(g·h)-1.但储存30 d的硝化菌SOUR降了11.63 mg·(g·h)-1,恢复运行51个周期后,氨氮去除率才达到92.64%,恢复后活性为14.92 mg·(g·h)-1,同时这种储存方法恢复时间较长,因此提出硝化颗粒污泥的临界活性为当硝化菌SOUR开始下降时,进行活性恢复.在临界活性的基础上,采用当硝化菌SOUR下降到临界活性时实施恢复,之后进入下一个储存周期,这种储存方式即为动态储存.当进水氨氮浓度分别为20、30、40 mg·L-1时,进行颗粒污泥活性恢复,进水氨氮浓度为40 mg·L-1恢复后硝化菌活性最高,经过3次动态储存后,其活性保持良好.当曝气时间分别为1、2、3 h时,进行颗粒污泥活性恢复,曝气时间为1 h时恢复后硝化菌活性最高,在动态储存过程中其活性一直保持较高水平.  相似文献   

20.
水胺硫磷降解优势菌的筛选及其降解条件的研究   总被引:5,自引:0,他引:5  
本文从已驯化好的活性污泥菌是悬液中分离筛选出水胺硫磷的降解优势菌,并对其降解条件进行了实验研究,当温度为25℃,PH为6.5~7.5,水胺硫磷进水浓度135mg/L,停留时间为12h,在供氧条件下,水胺硫磷降解率可达72.3%,而混合菌在最佳条件下,其水胺硫磷降解率为55.8%,本文还要菌种进行了鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号