首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Purpose

Removal of malathion from agricultural runoff was studied using novel copper-coated chitosan nanocomposite (CuCH)??a biopolymeric waste obtained from marine industry.

Methods

Synthesis and characterization of the adsorbent using different spectral techniques like Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer, Emmett, and Teller surface analyzer have been carried out. Equilibrium studies have been carried out to optimize the dose rate, pH, and the reaction time. Parathion and methyl parathion removal were also evaluated by CuCH in the batch mode. Using gas chromatography?Cmass spectrometry (GC?CMS) and FTIR studies suitable mechanism for adsorption has been suggested.

Results

The particle size of the adsorbent ranged from 700 to 750?nm. The surface area was found to be 20?m2?g-1 with a pore volume of 0.11?cc?g-1. The maximum adsorption capacity of malathion by CuCH was found to be 322.6?±?3.5?mg?g-1 at an optimum pH of 2.0. Presence of copper ions enhanced the adsorption capacity of the adsorbent. The reaction was found to follow pseudo second-order kinetics with a rate constant of 0.53?g?mg-1?min-1. Evidence from FTIR indicated that copper ions form a dithionate complex with malathion during the adsorption stage. The adsorbent was found to remove malathion completely from spiked concentration of 2?mg?l-1 in the agricultural run-off samples. It was also found that CuCH removed other organophospurous pesticides like methyl parathion and parathion under prevailing conditions.

Conclusions

The results indicated that CuCH could be applied for the removal of organophosphorous pesticides.  相似文献   

2.

Purpose and aim

Amido Black 10B is an azo dye with very high toxicity. It is now established that the dye damages the reparatory system of humans and also causes skin and eye irritations. It is therefore considered worthwhile to develop a systematic procedure to eradicate Amido Black 10B from its aqueous solution using a waste material as adsorbent. Therefore, adsorption of the dye is achieved using hen feathers as adsorbent.

Materials and methods

Before using hen feather as adsorbent material, it is washed, cut into small pieces and activated using hydrogen peroxide. Detailed chemical and physical analysis of hen feather was also carried out by known analytical techniques. The adsorptive removal of the dye was made through batch experiments in 100 mL airtight flasks. The experiment is divided in three major categories, the preliminary investigations, adsorption isotherm measurements, and kinetic studies.

Results

Under preliminary investigations, the effect of pH, temperature, concentration of dye, and amount of adsorbent were carried out. It was found that with increase in pH, the adsorption of Amido Black 10B decreases; while with increasing the amount of hen feather, it increases. The isothermal studies indicate that the ongoing adsorption process is endothermic in nature and obeys Langmuir, Freundlich, Tempkin, and DubininRadushkevitch (D–R) adsorption isotherm models. The Gibb’s free energy and entropy of the adsorption were also calculated. The D–R isotherm model verified the involvement of chemisorption during the adsorption. The kinetic measurements indicate operation of pseudo second order process during the adsorption and dominance of film diffusion mechanism at all the temperatures.

Conclusions

The developed method is highly efficient and ecofriendly. It also ascertains a necessitous utilization of waste material hen feather for the benefit of the society.  相似文献   

3.

Purpose

Chitosan with nylon 6 membranes was evaluated as adsorbents to remove copper and cadmium ions from synthetic industrial wastewater.

Methods

Chitosan and nylon 6 with glutaraldehyde blend ratio with (1:1+Glu, 1:2+Glu, and 2:1+Glu) have been prepared and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. Characterization of the synthesized membrane has been done with FTIR, XRD, TGA/DTA, DSC, and SEM. Chemical parameters for quantities of adsorption of heavy metal contamination have been done and the kinetics of adsorption has also been carried out.

Results

The optimal pH for the removal of Cd(II) and Cu(II) using chitosan with nylon 6. Maximum removal of the metals was observed at pH 5 for both the metals. The effect of adsorbent dose also has a pronounced effect on the percentage of removal of the metals. Maximum removal of both the metals was observed at 5 g/100 ml of the adsorbent.

Conclusion

Copper and cadmium recovery is parallel at all time. The percentage of removal of copper increased with increase in the pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing contact time from 0 to 360 min and then reaches equilibrium after 360 min; the equilibrium constant for copper and cadmium ions is more or less the same for the adsorption reaction.  相似文献   

4.

Purpose

Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-FeII and AC/N-FeIII), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions.

Method

The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors.

Results

Maximum removals of phosphate are obtained in the pH range of 3.78?C6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-FeII and AC/N-FeIII is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon.

Conclusions

Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-FeII has a higher phosphate removal capacity than AC/N-FeIII, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol?1 for AC/N-FeII and AC/N-FeIII, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

5.
Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR.
Graphical abstract ?
  相似文献   

6.

Purpose

This study has the objective to evaluate the lead(II) removal capacity of hydroxyapatite powder synthesized by microwave as an alternative method to decrease production time and cost.

Methods

Hydroxyapatite (HA) was synthesized by a microwave-assisted precipitation method using calcium nitrate and ammonium hydrogen phosphate as calcium and phosphorus sources, respectively. X-ray diffraction and Fourier transform infrared results clearly revealed that the resulting powder was HA with high purity and crystallinity. The obtained powder was used for the removal of lead(II) from aqueous solutions. The effects of pH, amount of adsorbent, initial lead(II) concentration, and contact time were studied in batch experiments.

Results

In the adsorption experiments, maximum lead(II) retention was obtained at pH 6. Adsorption equilibrium was established after 40 min. It was found that the adsorption of lead(II) on HA was correlated well (R 2?=?0.958) with the Freundlich equation for the concentration range studied. Both ion exchange and adsorption process were thought to exist in the removal process.

Conclusions

This study indicates that easily and rapidly synthesized HA by microwave-assisted precipitation method could be used as an efficient adsorbent for removal of lead(II) from aqueous solutions.  相似文献   

7.

Background and purpose

Regeneration of spent activated carbon assumes paramount importance in view of its economic reuse during adsorptive removal of organic contaminants. Classical thermal, chemical, or electrochemical regeneration methods are constrained with several limitations. Microbial regeneration of spent activated carbon provides a synergic combination of adsorption and biodegradation.

Methods

Microorganisms regenerate the surface of activated carbon using sorbed organic substrate as a source of food and energy. Aromatic hydrocarbons, particularly phenols, including their chlorinated derivatives and industrial waste water containing synthetic organic compounds and explosives-contaminated ground water are the major removal targets in adsorption?Cbioregeneration process. Popular mechanisms of bioregeneration include exoenzymatic hypothesis and biodegradation following desorption. Efficiency of bioregeneration can be quantified using direct determination of the substrate content on the adsorbent, the indirect measurement of substrate consumption by measuring the carbon dioxide production and the measurement of oxygen uptake. Modeling of bioregeneration involves the kinetics of adsorption/desorption and microbial growth followed by solute degradation. Some modeling aspects based on various simplifying assumptions for mass transport resistance, microbial kinetics and biofilm thickness, are briefly exposed.

Results

Kinetic parameters from various representative bioregeneration models and their solution procedure are briefly summarized. The models would be useful in predicting the mass transfer driving forces, microbial growth, substrate degradation as well as the extent of bioregeneration.

Conclusions

Intraparticle mass transfer resistance, incomplete regeneration, and microbial fouling are some of the problems needed to be addressed adequately. A detailed techno-economic evaluation is also required to assess the commercial aspects of bioregeneration.  相似文献   

8.

Purpose

The main objective of this work was to develop and test a pilot scheme for decontaminating pesticide-containing water derived from pesticide mixtures used to protect vineyards, in which the scheme comprises adsorption by an organoclay and includes a system where an enhanced or rapid microbial degradation of the adsorbed residues can occur.

Methods

In laboratory experiments, the Freundlich adsorption coefficients of formulations of two fungicides, penconazole and cyazofamid, onto the organoclay Cloisite 20 A were measured in order to predict the efficiency of this organoclay in removing these fungicides from the waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the depuration scheme.

Results

The adsorption tests with the pilot system show 96% removal of both fungicides over a few hours, similar to the efficiency of removal predicted from the laboratory adsorption tests. The formulation type may influence the efficiency of clay recovered after adsorption. Regarding the waste disposal, for instance, the organoclay composted after the treatment, cyazofamid showed significant dissipation after 90?days, whereas the dissipation of penconazole was negligible.

Conclusion

The depuration scheme developed showed to be efficient for decontaminating pesticide-containing water derived from vineyards, but additional treatments for the adsorbed residues still appear to be necessary for persistent pesticides. However, future decontamination research should be attempted for water contaminated with pesticides containing antifoaming agents in their formulations, in which case the present pilot system could not be applied.  相似文献   

9.

Purpose

This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign.

Methods

Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP.

Results

Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank.

Conclusions

The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.  相似文献   

10.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

11.

Background

The adsorption characteristics of Pb2+ ions from aqueous solutions onto calix[4]naphthalene have been investigated.

Method

Calix[4]naphthalene was prepared by the condensation of 1-naphthol and formaldehyde (1:2) in presence of hydrochloric acid at 80°C. The effect of various operation parameters, such as solution pH, initial metal ion concentration, contact time, and temperature, on the adsorption capacity of calix[4]naphthalene for Pb2+ have been investigated.

Result

Experimental results showed that the adsorption of Pb2+ ions increased with the increase in solution pH and temperature. Langmuir and Freundlich isotherms models were used to describe the adsorption behavior of Pb2+ by calix[4]naphthalene. Equilibrium data fitted well with the Langmuir isotherm model and the maximum adsorption capacity of calix[4]naphthalene for Pb2+ at 30°C was found to be 29.15 mg g?1. Kinetic studies indicated that the adsorption followed pseudo-second order model and the thermodynamic studies revealed that the adsorption process was spontaneous and endothermic in nature. The obtained results demonstrated that calix[4]naphthalene can be used as an effective adsorbent for Pb2+ ions removal from water.  相似文献   

12.

Introduction

Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1???g?L?1 for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources.

Materials and methods

Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH.

Results and discussion

The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64???g?mg?1 which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300?mg?L?1 for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0???g?L?1) of 3,640?L could be treated by 1?g of MIP with an estimated cost of US $1.5.

Conclusions

The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.  相似文献   

13.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

14.

Purpose and aim

Removal of an anionic azo dye Brilliant Yellow has been carried out from its aqueous solutions by using hen feathers as potential adsorbent.

Materials and methods

Hen feathers procured from local poultry were cut, washed, and activated. Detailed chemical and physical analysis of hen feathers and its characterization through scanning electron microscopy, X-ray diffraction, and infrared measurements have been made. Procured dye has been adsorbed over under batch measurements and adsorption process is monitored using UV spectrophotometer.

Results

Optimum parameters for the adsorption of Brilliant Yellow over hen feathers have been determined by studying the effect of pH, temperature, concentration of dye, and amount of adsorbent. On the basis of Langmuir adsorption, isotherms feasibility of the ongoing adsorption has been ascertained and thermodynamic parameters have been calculated. Attempts have also been made to verify Freundlich, Tempkin, and Dubinin?CRadushkevich adsorption isotherm models. It is found that during adsorption, uniform distribution of binding energy takes place due to interaction of the dye molecules and the ongoing adsorption process is chemisorptions. The kinetic measurements indicate dominance of pseudo-second-order process during the adsorption. The mathematical treatment on the kinetic data reveals the rate-determining step to be governed through particle diffusion at 8?×?10?5?M and involvement of film diffusion mechanism at higher concentration at temperatures at all the temperatures.

Conclusions

The developed process is highly efficient and it can be firmly concluded that hen feather exhibits excellent adsorption capacity towards hazardous azo dye Brilliant Yellow.  相似文献   

15.

Background

In this paper, batch removal of hexavalent chromium from aqueous solutions by Araucaria heterophylla leaves was investigated. The batch experiments were conducted to study the adsorption of metal species and effect of different pH, contact time, metal concentration, biosorbent concentration, and adsorption capacity.

Method

Freundlich and Langmuir??s isotherm model were used to describe the adsorption behavior, and the experimental results fitted Freundlich model well.

Results

The adsorption efficiency observed for all chromium concentrations, i.e., 1, 3, 5, and 10?mg/L was 100% and the equilibrium was achieved in 30?min for 1 and 3?mg/L, whereas for 5 and 10?mg/L, it was less than 60?min. FTIR spectra was taken to identify functional groups involved in the biosorption.

Conclusion

Thus, Araucaria leaves can be considered as one of the cheap and efficient biosorbent for toxic hexavalent chromium removal from natural or wastewaters.  相似文献   

16.

Introduction

On August 2006, a cargo ship illegally dumped 500?t of toxic waste containing high concentrations of hydrogen sulphide in numerous sites across Abidjan. Thousands of people became ill. Seventeen deaths were associated with toxic waste exposure.

Materials and methods

This study reports on environmental and health problems associated with the incident. A cross-sectional transect study was conducted in five waste dumping site areas.

Results

Of the households, 62.1% (n?=?502) were exposed to the effects of the pollutants and 51.1% of the interviewed people (n?=?2,368) in these households showed signs of poisoning. Most important symptoms were cough (37.1%), asthenia (33.1%), pruritus (29.9%) and nausea (29.1%).

Discussion

The health effects showed different frequencies in the five waste impact sites. Among the poisoned persons, 21.1% (n?=?532) presented symptoms on the survey day (i.e., 4?months after incident). Transect sampling allowed to determine a radius of vulnerability to exposure of up to 3?km from the point of toxic waste disposal.

Conclusion

The area of higher vulnerability is influenced by various environmental factors, such as size and severity of pollution site, duration of toxic waste pollution on the impact site and locally climatic conditions. The surveillance of effects on environment and human health is warranted to monitor the development.  相似文献   

17.

Purpose

The potential of using waste Saccharomyces cerevisiae as adsorbent for the adsorption of As(III) from aqueous solution was assessed.

Methods

The biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy analysis. Various parameters including pH, biosorbent dosage, contact time, and temperature were systematically investigated.

Results and conclusions

The FTIR results of S. cerevisiae biomass showed that biomass has different functional groups, and these functional groups are able to react with metal ion in aqueous solution. Several biosorption isotherms were used to fit the equilibrium data, showing sorption to be monolayer on the heterogeneous surface of the biosorbent. The maximum biosorption capacity calculated using Langmuir model was found to be 62.908???g/g at pH?5.0, biosorbent dosage 5?g/L, contact time 240?min, and temperature 35?°C. The kinetic studies indicated that the biosorption process of the As(III) followed well the pseudo-second-order equation. The intraparticle diffusion and Richenberg models were applied to the data, and we found that the biosorption of As(III) was governed by film diffusion followed by intraparticle diffusion. The thermodynamics constants indicated that the biosorption of As(III) onto S. cerevisiae was spontaneous and endothermic under examined conditions. Biosorbent could be regenerated using 0.5?M NaOH solution, with up to 75?% recovery.  相似文献   

18.

Purpose

The characteristics of organics in sulphite pulp mill effluent and in the receiving environment of effluent discharge were investigated to assess the basis for the persistence or attenuation of colour.

Methods

Characterization of organics was conducted through determination of SUVA, specific colour, and molecular weight distribution of organics using high performance size exclusion chromatography and by solid-state 13?C cross polarization (CP) NMR. The characteristics of organics from mill wastewater before and after secondary aerobic treatment, followed by lime treatment and from the receiving environment, an enclosed brackish lake were compared. Changes in the character of organics in lake water over a period of 14?years were studied in the context of changes in mill processing and climate impacts.

Results

High colour in mill effluent and in receiving waters correlated with high SUVA and specific colour levels, high molecular weight range and aromatic content. Conversely, lake waters with low colour had UV absorbing compounds of much lower molecular weight range and low relative abundance of aromatic compounds. Attenuation of colour and changes in the character of organics in the receiving environment coincided with increased concentrations of metal cations.

Conclusions

These increased concentrations appear to be due to the effects of climate change, lake management and their presence in mill effluent, with subsequent discharge to the lake. Attenuation of colour was found to be predominantly through removal of high molecular weight aromatic compounds where the removal processes could be through adsorption and co-precipitation with divalent metals, as well as through dilution processes.  相似文献   

19.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

20.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号