首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many important ecological phenomena depend on the success or failure of small introduced populations. Several factors are thought to influence the fate of small populations, including resource and habitat availability, dispersal levels, interspecific interactions, mate limitation, and demographic stochasticity. Recent field studies suggest that Allee effects resulting from mate limitation can prevent the reestablishment of sexual zooplankton species following a disturbance. In this study, we explore the interplay between Allee effects and local environmental conditions in determining the population growth and establishment of two acid-sensitive zooplankton species that have been impacted by regional anthropogenic acidification. We conducted a factorial design field experiment to test the impact of pH and initial organism densities on the per capita population growth (r) of the sexual copepod Epischura lacustris and the seasonally parthenogenetic cladoceran Daphnia mendotae. In addition, we conducted computer simulations using r values obtained from our experiments to determine the probability of extinction for small populations of acid-sensitive colonists that are in the process of colonizing recovering lakes. The results of our field experiment demonstrated that local environmental conditions can moderate the impacts of Allee effects for E. lacustris: Populations introduced at low densities had a significantly lower r at pH 6 than at pH 7. In contrast, r did not differ between pH 6 and 7 environments when E. lacustris populations were introduced at high densities. D. mendotae was affected by pH levels, but not by initial organism densities. Results from our population growth simulations indicated that E. lacustris populations introduced at low densities to pH 6 conditions had a higher probability of extinction than those introduced at low densities to a pH 7 environment. Our study indicates that environmental conditions and mate limitation can interact to determine the fate of small populations of sexually reproducing zooplankton species. If a more rapid recovery of acid-damaged zooplankton communities is desired, augmentation of dispersal levels may be needed during the early phases of pH recovery in order to increase the probability of establishment for mate-limited zooplankton species.  相似文献   

2.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

3.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

4.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

5.
Rudolf VH 《Ecology》2008,89(6):1650-1660
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.  相似文献   

6.
Werner EE  Peacor SD 《Ecology》2006,87(2):347-361
Indirect effects propagated through intervening species in a food web have important effects on community properties. Traditionally, these indirect effects have been conceptualized as mediated through density changes of the intervening species, but it is becoming increasingly apparent that those mediated through trait (phenotypic) responses also can be very important. Because density- and trait-mediated indirect effects have different properties, it is critical that we understand the mechanisms of transmission in order to predict how they will interact, and when or where they will be important. In this study, we examined the mechanisms and consequences of the lethal (density-mediated) and nonlethal (trait-mediated) effects of a larval odonate predator on a guild of four herbivore species (a larval anuran and three species of snails) and their resources. We also manipulated system productivity in order to explore the effects of environmental context on the transmission of these two types of indirect effects. We show that trait-mediated effects arising from the predator can be very strong relative to density-mediated effects on both the competing herbivores and the species composition and production of their resources. A number of these indirect effects are shown to be contingent on productivity of the system. We further present evidence that trait- and density-mediated indirect effects originating from a predator may be transmitted independently through different routes in a food web, particularly when spatial responses of the transmitting prey are involved. Finally, effects on prey growth due to trait responses to the predator varied from negative to positive in predictable ways as a function of time and indirect effects on the larger food web. These results indicate the important role that trait-mediated indirect effects can play in trophic cascades and keystone predator interactions, and we discuss how the mechanisms involved can be incorporated in theory.  相似文献   

7.
The presence of prey heterogeneity and weakly interacting prey species is frequently viewed as a stabilizer of predator-prey dynamics, countering the destabilizing effects of enrichment and reducing the amplitude of population cycles. However, prior model explorations have largely focused on long-term, dynamic attractors rather than transient dynamics. Recent theoretical work shows that the presence of prey that are defended from predation can have strongly divergent effects on dynamics depending on time scale: prey heterogeneity can counteract the destabilizing effects of enrichment on predator-prey dynamics at long time scales but strongly destabilize systems during transient phases by creating long periods of low predator/prey abundance and increasing extinction probability (an effect that is amplified with increasing enrichment). We tested these general predictions using a planktonic system composed of a zooplankton predator and multiple algal prey. We first parameterized a model of our system to generate predictions and tested these experimentally. Our results qualitatively supported several model predictions. During transient phases, presence of defended algal prey increased predator extinctions at low and high enrichment levels compared to systems with only a single edible prey. This destabilizing effect was moderated at higher dilution rates, as predicted by our model. When examining dynamics beyond initial oscillations, presence of the defended prey increased predator-prey temporal variability at high nutrient enrichment but had no effect at low nutrient levels. Our results highlight the importance of considering transient dynamics when assessing the role of stabilizing factors on the dynamics of food webs.  相似文献   

8.
The anti-predator behaviour of Baltic crustacean planktivores was studied in feeding experiments under predation pressure of herring. The experiments were conducted with pelagic mysids: Mysis mixta and Mysis relicta, and with Cercopagis pengoi, a non-indigenous cladoceran, which invaded the Baltic Sea in 1992. Zooplankton was offered as prey. Two kinds of experiments were performed in the absence and presence of chemical predator cues: (1) two-prey experiments with prey, which have poor or good escape responses and all three planktivores and (2) natural prey experiments with mysids in natural zooplankton assemblages. The results showed that all three species reacted to the chemical cue of herring by decreasing their feeding rate and altering prey selection. C. pengoi selected easily captured prey (rotifers) in two-prey experiments under predation risk while selection for any prey was evident in mysids in natural prey experiments only in the absence of predator cues. This indicates that planktivores have different anti-predator strategies, which are modified by their own prey capture abilities. C. pengoi was a very efficient predator on small prey with size-specific prey consumption rate 5 to 18 times the rate of mysids. Results show that the studied planktivores are capable of adjusting their feeding behaviour to decrease their conspicuousness in order to increase survival under predation risk. Further, results support the view that C. pengoi has adapted well to the Baltic ecosystem, sharing food niche with pelagic mysids and most probably having a strong influence on the whole pelagic food web.  相似文献   

9.
Malaria and risk of predation: a comparative study of birds   总被引:5,自引:0,他引:5  
Møller AP  Nielsen JT 《Ecology》2007,88(4):871-881
Predators have been hypothesized to prey on individuals in a poor state of health, although this hypothesis has only rarely been examined. We used extensive data on prey abundance and availability from two long-term studies of the European Sparrowhawk (Accipiter nisus) and the Eurasian Goshawk (Accipiter gentilis) to quantify the relationship between predation risk of different prey species and infection with malaria and other protozoan blood parasites. Using a total of 31 745 prey individuals of 65 species of birds from 1709 nests during 1977-1997 for the Sparrowhawk and a total of 21 818 prey individuals of 76 species of birds from 1480 nests for the Goshawk during 1977-2004, we show that prey species with a high prevalence of blood parasites had higher risks of predation than species with a low prevalence. That was also the case when a number of confounding variables of prey species, such as body mass, breeding sociality, sexual dichromatism, and similarity among species in risk of predation due to common descent, were controlled in comparative analyses of standardized linear contrasts. Prevalence of the genera Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma were correlated with each other, and we partitioned out the independent effects of different protozoan genera on predation risk in comparative analyses. Prevalence of Haemoproteus, Leucocytozoon, and Plasmodium accounted for interspecific variation in predation risk for the two raptors. These findings suggest that predation is an important factor affecting parasite-host dynamics because predators tend to prey on hosts that are more likely to be infected, thereby reducing the transmission success of parasites. Furthermore, this study demonstrates that protozoan infections are a common cause of death for hosts mediated by increased risk of predation.  相似文献   

10.
Scleractinian corals experience a wide range of flow regimes which, coupled with colony morphology, can affect the ability of corals to capture zooplankton and other particulate materials. We used a field enclosure oriented parallel to prevailing oscillatory flow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size under realistic flow speeds. Experiments were carried out from 1989 to 1992. Particles (Artemia salina cysts) and naturally occurring zooplankton attracted into the enclosures were used as prey for the corals Madracis mirabilis (Duchassaing and Michelotti) (narrow branches, small polyps), Montastrea cavernosa (Linnaeus) (mounding, large polyps), and Porites porites (Pallas) (wide branches, small polyps). This design allowed corals to be used without removing them or their prey from the reef environment, and avoided contact of zooplankton with net surfaces. Flow speed had significant effects on capture rate for cysts (M. mirabilis), total zooplankton (M. mirabilis, M. cavernosa), and non-copepod zooplankton (M. mirabilis). Zooplankton prey capture increased with prey concentration for M. mirabilis and M. cavernosa, over a broad range of concentrations, indicating that saturation of the feeding response had not occurred until prey density was over 104 items m−3, a concentration at least an order of magnitude greater than the normal range of reef zooplankton concentrations. Location of cyst capture on coral surfaces was not uniform; for M. cavernosa, sides and tops of mounds captured most particles, and for P. porites, capture was greatest near branch tops, but was close to uniform for M. mirabilis branches in all flow conditions. The present study confirms laboratory flume results, and field results for other species, suggesting that many coral species experience particle flux and encounter rate limitations at low flow speeds, decreasing potential zooplankton capture rates. Received: 17 September 1996 / Accepted: 22 November 1997  相似文献   

11.
Habitat structure affects intraguild predation   总被引:4,自引:0,他引:4  
Intraguild predation is thought to be ubiquitous in natural food webs. Yet, theory on intraguild predation predicts the intraguild prey to persist only under limited conditions. This gap between theory and empirical observations needs scrutiny. One reason might be that theory has focused on equilibrium dynamics and a limited set of species (usually three) that interact in well-mixed populations in unstructured habitats, and these assumptions will often not hold in natural systems. In this review, we focus on the effects of habitat structure on intraguild predation. Habitat structure could reduce encounter rates between predators and prey and could create refuges for prey. In both cases, habitat structure could reduce the strength of intraguild interactions, thereby facilitating species coexistence. A meta-analysis of studies on manipulation of habitat structure shows that intraguild prey indeed suffer less from intraguild predation in structured habitats. This was further confirmed by a meta-analysis in which studies on intraguild predation were classified according to habitat structure. Intraguild predation reduced densities of the intraguild prey significantly more in habitats with little structure than in habitats rich in structure. The effect of intraguild predation on the shared prey was negative, and not significantly affected by habitat structure. We conclude that habitat structure may increase persistence of the intraguild prey by decreasing the strength of the interaction between intraguild predator and intraguild prey.  相似文献   

12.
We present a new predator-prey model where, except for the prey growth, assumed to be logistic, we endeavor to give some behavioral justification to all elements of the predator-prey interaction. The functional response takes account of predator satiation and predator competition. It is supported by some experimental evidence. We distinguish two contributions to the numerical response: the positive part, proportional to the functional response, is the birth rate of predators; the negative part is the death rate due to hunger.Two outcomes are possible. If the prey are unable to grow fast enough to replace the amount killed by the predators, both species become extinct. In the opposite case, both populations stabilize at a constant population. At this equilibrium level, the prey are not abundant enough to satiate the predators.The predation rate that allows the highest predator population is one half of the ideal prey growth rate. A higher exploitation rate can allow higher populations only temporarily. Evolved predator behavior, reguges for the prey, or other mechanisms can explain this regulation.Two more population behaviors (cycles and predator extinction) can be obtained with a time-lag in one of the responses. This is shown in a separate paper.The model is structurally stable. It can thus withstand small environmental perturbations.  相似文献   

13.
A mechanistic model was developed to assess the impact of predation of juvenile Notonecta maculata on size structured Daphnia magna populations and to provide a framework for quantifying the backswimmers uptake of food. Results of experiments and model predictions clearly demonstrate selective predation of backswimmers when fed with a choice of daphnid size classes, with patterns of selectivity differing across N. maculata instars. The model describes the foraging process empirically on the base of a general predation cycle including four conditional events instead of using classic functional response curves. For model parameterisation components of predation, namely probability of encounter, attack and success as well as time spent on handling prey was directly observed by means of video tracking experiments. Since attack rate, capture success and handling time appeared to be a function of prey size differing between Notonecta instars, the model takes into account ontogenic changes in both predator and prey characteristics. Independent data of functional response and size selectivity experiments were used for model validation and proved the model outcome to be consistent with observations.  相似文献   

14.
Urban MC 《Ecology》2007,88(10):2587-2597
Growth is a critical ecological trait because it can determine population demography, evolution, and community interactions. Predation risk frequently induces decreased foraging and slow growth in prey. However, such strategies may not always be favored when prey can outgrow a predator's hunting ability. At the same time, a growing gape-limited predator broadens its hunting ability through time by expanding its gape and thereby creates a moving size refuge for susceptible prey. Here, I explore the ramifications of growing gape-limited predators for adaptive prey growth. A discrete demographic model for optimal foraging/growth strategies was derived under the realistic scenario of gape-limited and gape-unconstrained predation threats. Analytic and numerical results demonstrate a novel fitness minimum just above the growth rate of the gape-limited predator. This local fitness minimum separates a slow growth strategy that forages infrequently and accumulates low but constant predation risk from a fast growth strategy that forages frequently and experiences a high early predation risk in return for lower future predation risk and enhanced fecundity. Slow strategies generally were advantageous in communities dominated by gape-unconstrained predators whereas fast strategies were advantageous in gape-limited predator communities. Results were sensitive to the assumed relationships between prey size and fecundity and between prey growth and predation risk. Predator growth increased the parameter space favoring fast prey strategies. The model makes the testable predictions that prey should not grow at the same rate as their gape-limited predator and generally should grow faster than the fastest growing gape-limited predator. By focusing on predator constraints on prey capture, these results integrate the ecological and evolutionary implications of prey growth in diverse predator communities and offer an explanation for empirical growth patterns previously viewed to be anomalies.  相似文献   

15.
Trussell GC  Matassa CM  Luttbeg B 《Ecology》2011,92(9):1799-1806
There is strong evidence that the way prey respond to predation risk can be fundamentally important to the structuring and functioning of natural ecosystems. The majority of work on such nonconsumptive predator effects (NCEs) has examined prey responses under constant risk or constant safety. Hence, the importance of temporal variation in predation risk, which is ubiquitous in natural systems, has received limited empirical attention. In addition, tests of theory (e.g., the risk allocation hypothesis) on how prey allocate risk have relied almost exclusively on the behavioral responses of prey to variation in risk. In this study, we examined how temporal variation in predation risk affected NCEs on prey foraging and growth. We found that high risk, when predictable, was just as energetically favorable to prey as safe environments that are occasionally pulsed by risk. This pattern emerged because even episodic pulses of risk in otherwise safe environments led to strong NCEs on both foraging and growth. However, NCEs more strongly affected growth than foraging, and we suggest that such effects on growth are most important to how prey ultimately allocate risk. Hence, exclusive focus on behavioral responses to risk will likely provide an incomplete understanding of how NCEs shape individual fitness and the dynamics of ecological communities.  相似文献   

16.
Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.  相似文献   

17.
Forshay KJ  Johnson PT  Stock M  Peñalva C  Dodson SI 《Ecology》2008,89(10):2692-2699
When parasitic infections are severe or highly prevalent among prey, a significant component of the predator's diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of infection status are largely absent. We measured the nutritional consequences of chytridiomycete infections in Daphnia, which achieve high prevalence in lake ecosystems (>80%), and tested the hypothesis that Daphnia pulicaria infected with Polycaryum laeve are diminished in food quality relative to uninfected hosts. Compared with uninfected adults, infected individuals were smaller, contained less nitrogen and phosphorus, and were lower in several important fatty acids. Infected zooplankton had significantly shorter carapace lengths (8%) and lower mass (8-20%) than uninfected individuals. Parasitized animals contained significantly less phosphorus (16-18% less by dry mass) and nitrogen (4-6% less) than did healthy individuals. Infected individuals also contained 26-34% less saturated fatty acid and 31-42% less docosahexaenoic acid, an essential fatty acid that is typically low in cladocera, but critical to fish growth. Our results suggest that naturally occurring levels of chytrid infections in D. pulicaria populations reduce the quality of food available to secondary consumers, including planktivorous fishes, with potentially important effects for lake food webs.  相似文献   

18.
R. N. Zajac 《Marine Biology》1995,123(3):531-541
Patterns of tissue loss due to sublethal predation and potential effects on population dynamics were investigated in the polychaete Polydora cornuta Bosc, 1802. Field observations in southeastern Connecticut showed that the percentage of adult worms regenerating segments and/or feeding palps varied temporally from May to November 1982, but the general pattern suggests a constant level of sublethal encounters. Over all sampling dates, a mean of 14.9 and 7.0% of the population was found regenerating posterior segments and palps, respectively. Worms lost a mean of 19.1% of their segments. There was a weak, but statistically non-significant, size-specific difference in the number of regenerating segments per individual. Worms with 20 to 39 segments and 60 to 80 + segments lost an average of 13.8 and 17.2% of their segments, respectively, but worms with 40 to 59 segments lost an average of 23.4% of their segments. The incidence of regeneration (palps and segments) increased linearly with increasing adult density in the population. There was also a strong positive linear relationship between the number of segments available and the number of segments lost at the population level. This suggests that the constant level of sublethal predation can be explained by predators taking prey in proportion to their density and/or the number of segments available. This pattern is supported by results from a laboratory functional response experiment which indicated that at high prey density, partial consumption of P. cornuta by the predatory polychaete Eteone heteropoda was greater than lethal consumption. Lethal predation of P. cornuta by E. heteropoda did not vary across experimental density treatments. Demographic modelling suggested that sublethal predation can reduce the population growth rate of P. cornuta, but the reduction is less than if the added predation pressure was solely lethal. It was estimated that up to 25% of the population could be preyed upon in a sublethal manner before the potential for population growth fell below population maintenance levels.  相似文献   

19.
The trophic ecology of the stomiid assemblage (Pisces, Stomiiformes, Stomiidae) in the eastern Gulf of Mexico, a region with physical and biological characteristics typical of oligotrophic low-latitude regimes, was investigated. Over 1400 specimens representing 69 species and 17 genera were examined. Four patterns of feeding were evident among the abundant stomiids: (1) myctophid predation; (2) zooplankton/small micronekton predation; (3) penaeidean shrimp predation; and (4) copepod/micronekton predation. One rare species preyed on cephalopods. Il was concluded that stomiids exhibited a high level of prey-selectivity, particularly considering the broad range of prey types available in the eastern Gulf of Mexico. The absence of numerically dominant potential prey (e.g.Cyclothone spp., sternoptychids) in the diets of piscivorous stomiids is possibly a function of feeding periodicity coupled with stomiid vertical migration. Stomiids may feed at night in the upper 200 m on vertically migrating myctophids while disregarding co-occurring nonmigrating prey during the daytime. Integration of stomiid abundance and diet data suggests that: (1) stomiids are the dominant upper trophic-level predators of the Gulf of Mexico mesopelagial, (2) stomiids inflict the highest predation impact on myctophids in low-latitude midwater ecosystems, and (3) the historic use of predation-avoidance arguments to explain certain mesopelagic phenomena (e.g. vertical migration, ventral photophores) appears to be substantiated by estimates of stomiid predation-impact. The stomiids may serve as key trophic mediators in the transfer of energy from the mesopelagial to the bathyand benthopelagial.  相似文献   

20.
Capture of zooplankton by scleractinian corals has been noted for several species, yet quantitative information on rates of capture and differential capture by prey taxon has been lacking. We used field enclosures to examine prey capture for two coral species,Madracis mirabilis (Duchassaing and Michelotti) andMontastrea cavernosa (Linnaeus), on the north coast of Jamaica (Discovery Bay) in November 1989, February and March 1990, and January 1992.M. mirabilis has small polyps and a branching colony morphology (high surface/volume ratio), whereasM. cavernosa has large polyps and mounding colonies (low surface/volume ratio). Corals were isolated front potential prey, then were introduced into enclosures with enhanced zooplankton concentrations for 15- to 20-min feeding periods. Corals were fixed immediately after the experiment to prevent digestion, and coelenteron contents were examined for captured zooplankton. Plankton pumps were used to sample ambient zooplankton in the enclosures near the end of each run. Selectivity and capture rates were calculated for each prey taxon in each experiment; both indices were high for relatively uncommon large prey, and low for copepods, which were often the most common items in the plankton. Sizes of zooplankton captured by both species were generally larger than those available considering all prey taxa combined, but were almost the same for both coral species, even though the corals' polyp sizes are very different. This occurred primarily because small copepods, with low capture rates, dominated most plankton samples. For specific prey species, or group of species, there were few significant differences in size between the prey available and the prey captured.M. mirabilis, with small polyps, also captured far more prey per unit coral biomass than didM. cavernosa, with much larger polyps. We hypothesize that the large differences in capture rate of prey taxa are related to escape or avoidance behavior by those potential prey, and to the mechanics of capture, rather than to any selectivity by the corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号