首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为准确描述横向滑坡作用下管道非线性响应特征,采用非线性自适应网格技术建立横向穿越滑坡段埋地管道三维有限元模型,利用非线性接触模型表征管土之间、滑坡体与非滑坡体之间的相互作用,探究滑坡位移、埋深及壁厚对管道应变响应特性的影响规律。研究结果表明:随着滑坡位移增大,滑坡体与非滑坡体交界区域和管道位移最大区域两侧管道应变显著增大,易发生失效;结合应变失效判定准则分析,管道不发生失效的最大滑坡位移、最小管道壁厚及最大埋深,在本文算例中分别是0.36 m、9.50 mm、0.97 m。因此管道经过滑坡区时,可适当增大壁厚、减小埋深;滑坡发生后,应重点关注滑坡体与非滑坡体交界区域及管道位移最大区域两侧的变形情况。研究结果可为穿越横向滑坡管道的设计及安全运营提供一定参考。  相似文献   

2.
为研究地表载荷对硬岩区埋地管道力学性能的影响,建立了管-土耦合三维数值模型,分析了地表载荷大小、作用面积、管道压力、管道径厚比及回填土弹性模量对管道应力分布、塑性应变、椭圆度的影响。结果表明:地表压载作用下,高应力区首先出现在管道顶部且呈椭圆形;随着地表载荷及其作用面积的增大,管道高应力区逐渐扩大,管道截面左右两侧也出现应力集中;随着回填土弹性模量、管道壁厚及内压的增加,管道顶部高应力区及最大等效应力均减小。塑性应变首先出现在管顶,且塑性区随地表载荷、载荷作用长度增加而增大,随回填土体弹性模量及管道壁厚增大而逐渐减小;当内压为0~4MPa时,管道塑性应变及塑性区随内压的增大而减小。管道椭圆度随回填土体弹性模量、管道内压、壁厚增加而逐渐减小,随地表压载增大而增大。  相似文献   

3.
利用大型数值模拟仿真软件ABAQUS对地基差异沉降下的埋地管道力学性状进行了分析,找出了管道受力较大的区域.采用电测法对地基差异沉降下的埋地管道受力状况进行现场测试,结果表明,有限元计算结果与试验吻合良好.对管道每隔一个月连续进行4次应力测试,得知地基差异沉降下管道所受的应力远小于管道材料的许用应力.分析了埋地管道受力影响因素.可以为地基差异沉降下埋地管道最大应力区的有效防护提供参考.  相似文献   

4.
为探究不同埋置深度对原水管道影响,利用缩尺模型对不同埋深条件下原水管道受力特征进行分析,综合研究管道外径、管道埋深、加载值和加载方式等因素对管道受力影响。结果表明:中心加载条件下,随管道埋深增加,管道应力呈先增大后减小趋势,当埋深厚度与管径比值为3时,管道应力达到最大,土拱效应开始显现;偏心加载条件下,埋深厚度增大使管道应力不断增加,但后期管道应力增长率小于前期;相同埋深厚度条件下,中心加载与偏心加载条件下,同截面管底处应力值相对最大。研究结果可为不同埋深区域内原水管道维护运营提供指导。  相似文献   

5.
为研究地面爆炸载荷作用下埋地管道的动力响应问题,建立了爆炸载荷下的埋地管道数值计算模型,对地面爆炸后埋地管道的应力、变形过程进行了仿真,并研究了炸药量、管道壁厚和管顶覆土厚度对管道应力应变的影响规律。结果表明:地面爆炸发生后,管道应力和变形在短时间内迅速增大,较短作用时间后开始稳定,随后主要往轴向扩展,高应力区和塑性应变区出现在管道上半部分,管道回弹前高应力区局部出现应力衰减;越靠近迎爆点,管道应力波动越大;炸药量越大、管顶覆土厚度越小,埋地管道截面的应力波动越大;炸药量越大、管道壁厚和管顶覆土厚度越小,埋地管道变形越大。  相似文献   

6.
为了研究腐蚀及地面运动对埋地天然气管线安全性的协同影响,以X80管道为研 究对象,模拟腐蚀缺陷及土壤力作用于管道之上,利用有限元方法对有腐蚀缺陷与预应 变情况下的管道局部等效应力及塑性变形进行评估,结果表明腐蚀缺陷的深度对局部应 力和应力分布影响非常明显,在失效压力预测中起着决定性作用。随着腐蚀深度的增加 ,应力集中增强,导致内表面和外表面的等效应力大小进一步分化,腐蚀深度的增加对 管道内表面的等效应力的影响很大,但对有效塑性应变的影响却不大。模拟管道上施加 有纵向应变的土壤力,不论拉伸与压缩的情况下,都会降低管道的失效压力,在施加拉 伸预应变下的管道失效压力小于压缩预应变下的。塑性变形首先发生在外表面处,并扩 展到腐蚀缺陷相邻区域,管道内表面也具有一定的塑性变形,但强度低。  相似文献   

7.
水毁灾害是长输油气埋地管道灾害中造成经济损失最严重、对环境危害最深远的自然灾害之一。为了分析埋地管道在水毁灾害中的稳定性,探讨了埋地管道在水毁灾害中的载荷分布情况;采用特征值屈曲理论,分析了埋地管道在水毁灾害中悬跨和漂浮2种主要形式下,不同管道外径和管道壁厚对埋地管道在水毁灾害中稳定性的影响,计算得到特定条件下埋地管道水毁的极限长度;建立了埋地管道在水毁灾害中的有限元模型。结果表明:管道在水毁灾害悬跨和漂浮情况下极限长度和屈曲位置不同,随着管道壁厚的增加,埋地管道在水毁灾害中的稳定性近似呈缓慢的线性增长;增大管道外径能够有效降低埋地管道在水毁灾害中的位移,并显著提高管道在水毁灾害中的抗屈曲能力。  相似文献   

8.
为研究横向滑坡作用下埋地管道的力学响应,采用自主搭建的埋地管道滑坡试验装置开展不同滑坡范围下的横向滑坡埋地管道力学特性试验,并建立工程尺度的埋地管道滑坡模型,通过改变相关参数开展数值模拟。研究结果表明:大范围横向滑坡下,管道最大应力位于管道中部附近,随滑坡范围增加,管道最大应力位置逐渐远离管道中部;通过BP神经网络预测模型得到横向滑坡下埋地管道最大位移、最大轴向拉应变和最大轴向压应变。研究结果可为快速评估横向滑坡下埋地管道安全提供指导。  相似文献   

9.
为了研究在地面沉降作用下PE燃气管道的受力特性及失效原因,借助ANSYS软件,探究了在地面沉降作用下PE100、管径DN110、e=10的燃气PE管道的应力-应变响应情况,分析了管道失效影响因素以及失效原因,并得出管道的失效危险点、管道极限沉降位移及极限截面变化率。结果表明:在地面沉降作用下管道的失效危险点出现在沉降区与非沉降区交接处的管道内表面;且在地面沉降作用下,管道产生的压缩变形是导致管道失效的主要原因,管道弯曲变形的存在会使管道的压缩变形更加严重。这为防治埋地燃气聚乙烯管道在地面沉降作用下的管道安全评估提供理论参考。  相似文献   

10.
为了分析管道上凹陷对其安全性的影响,以非线性接触模型为基础,应用ABAQUS有限元软件,建立矩形状压头作用于管道的三维模型。通过求解模型,探讨了凹陷深度、凹陷位置、凹陷尺寸、管道内压对管道轴向应变和韧性失效损伤因子的影响。结果表明:管道的轴向应变随着内压的增大而增大,然而内压的存在却对管道韧性失效起到一定的抑制作用。当韧性失效损伤因子D=1时可以通过韧性断裂准则预测其临界失效应变;当凹陷深度超过一定范围内压会使损伤程度增大;当凹陷位置为垂直于管道正上方时,其对管道的轴向应变及韧性失效损伤因子的影响较大;当管道内压一定时,随着凹陷变形量的增加,与凹陷轴向长度相比,凹陷宽度的变化对管道的轴向应变及韧性失效损伤因子程度影响更显著,而增大凹陷长度和宽度均可有效降低其对管道安全性的影响。  相似文献   

11.
为准确掌握大口径管道的轴向应力应变状态,保障管道的安全运行,通过假定4类不同形式的软土沉降位移,研究不同沉降形式对管道轴向应力状态的影响。采用非线性有限元方法建立管道轴向应力应变参数化数值计算模型,开展影响因素分析。结果表明:针对软土沉降位移作用下1 422 mm X80大口径管道,沉降量相同时,突变型位移载荷作用下管道受到的轴向应力最大,最大轴向应力位于两侧非沉降区距管道中心约53 m处;软土沉降量达到工程实际中可能的最大值1 m时,大口径X80管道内轴向应力小于0.9倍管材屈服强度,管道环焊缝可以采用基于应力的工程适用性评估方法开展ECA(Engineering Critical Assessment)评价。  相似文献   

12.
为解决采空区煤矿工作面逐渐开采引起的埋地管道力学行为变化问题,以实际地质参数为基础,运用有限元软件建立管-土三维有限元模型,模拟水平煤层工作面推进方向与管道走向之间不同夹角以及不同煤层倾角时工作面逐步开采引起的埋地管道力学行为变化,得出在2种情况下埋地管道的力学行为时变性规律。结果表明:水平煤层不同夹角开采时,在开采中后期,随着开采时间的不断增加,大夹角工况下的管道最大应力位移增长速度比小夹角工况快;开采完成后,水平夹角越大管道越危险;不同煤层倾角时,埋地管道最大位移变化随开采时间的增加基本呈线性趋势,且煤层倾角越大,管道的最大位移越小,管道越安全。  相似文献   

13.
活动断层是埋地长输管道安全运行面临的主要威胁,走滑断层是常见的1种断层形式,走滑断层错动下管道会产生较大的轴向应变而引发失效。采用松散颗粒状的松砂土进行管沟回填是穿越断层埋地管道主要的抗震措施之一。为得到经济有效、适用工程的管沟尺寸,基于非线性有限元方法建立了准确的考虑管沟回填的管道穿越走滑断层数值模型,使用壳单元和实体单元模型来模拟管道和土壤,采用面与面接触算法准确描述管土接触;通过参数化计算,分析了管沟的几何尺寸对管道应变的影响,并基于经济性原则给出了管沟尺寸的建议值。结果表明:管沟坡度是影响管道应变的主要因素,工程中建设管沟时建议其管沟坡度小于1,且管道尽量浅埋,对于管沟加宽裕量可不做特殊处理。研究结果可为埋地管道的抗震设计提供参考,为管道的安全运营提供保障。  相似文献   

14.
走滑断层是埋地管道常见的地质灾害威胁,断层作用下管道会发生较大的拉压应变而失效。为得到X80管道的设计应变,基于有限元方法建立了走滑断层作用下管道的应变响应数值计算模型,模型使用壳单元模拟管道,非线性弹簧单元模拟土壤约束,采用西二线实际工程的管道应变影响参数范围,计算了管道的设计应变;为预测管道的设计应变值,基于以上参数化分析得到的4 817组设计应变结果,采用人工神经网络建立了管道设计应变预测模型。结果表明:该神经网络模型预测结果的最大相对误差小于10%,预测准确性良好,且该方法具有较高的计算效率,可以为断层作用下埋地管道的应变设计与评估提供参考。  相似文献   

15.
针对采空塌陷对输气管道的潜在威胁,采用管道-土壤相互作用(PSI)单元,结合三向土弹簧非线性模型,建立采空塌陷区埋地输气管道的有限元计算模型,分析了不同管径、壁厚和内压影响下管道的变形和受力规律,并确定最大变形和最大受力的位置。结果表明:适当增加壁厚和减少内压能有效提高管道的安全性;最大Von-Mises应力和最大竖向应变位置均在内边缘塌陷区且靠近中间塌陷区;最大轴向应力和最大轴向应变位置均位于中间塌陷区两侧。所得结果对埋地输气管道穿越采空区的安全防护具有一定参考价值。  相似文献   

16.
为研究堆载大小对原水管道受力变形的影响,采用量纲分析法得出模型试验相似比,并根据相似比进行模型箱的设计、管道材料的选取和重塑土的配制,研究不同工况下管道的受力特征。试验结果表明:整体上管道端部应力大于管中央应力,管轴向应力大于管环向应力。在中心加载下,管端应力值较管中央处大,前者增长速度更快,而后者增长速度较慢。在偏心荷载作用下,靠近荷载的管端应力最大,而管中央应力最小;尤其在偏载6 kPa作用下,管端下表面轴向应力达到595 kPa,而管中央处仅有64 kPa,管端受边界约束作用明显,管道呈弯曲变形。  相似文献   

17.
针对黄土遇水后湿陷产生陷穴并引起埋地管道悬空这一过程中管道的力学行为,以基于弹塑性地基的黄土湿陷区悬空管道力学模型为基础,从湿陷原因和机理出发,建立三维有限元实体模型,模拟了土体湿陷过程和沉降变形,模拟计算结果与理论值和实测值进行了比对验证;进一步的计算和回归分析得到了管道最大位移、最大von Mises应力与地表土体湿陷沉降量的变化规律,同时也得到了最终湿陷情况下管道的von Mises应力分布和湿陷区范围的影响。结果表明:土体湿陷沉降是管道和土体共同作用的结果,湿陷前期管道与土体一起运动,位移和应力增加较快,而管道下方土体脱离管道产生陷穴后则增长较慢;管道最大位移和土体湿陷沉降量间呈对数函数关系,而管道最大von Mises应力和土体湿陷量呈指数函数关系; 湿陷区管段向下弯曲变形会在3个位置形成应力集中区,湿陷区范围增大会引起管道应力和变形的明显增加,且3个区域的最值分布有所不同。  相似文献   

18.
为分析埋地含缺陷PE管道在交通荷载作用下的力学行为,选用Prony级数模拟管道,并采用ABAQUS有限元软件建立不同缺陷PE80管道模型和不同埋深的管土模型。通过对管道轴向与环向应力的研究,确定不同条件下管道的应力大小与分布。结果表明:当管道存在缺陷时,缺陷处会出现应力突变;不同位置的缺陷对管道的应力分布影响不同;缺陷相对深度改变会使缺陷处应力变化明显,通过建立多元回归方程得出对缺陷管道最大Von Mises应力影响程度为,缺陷相对深度(Q)>管道埋深(H)>车辆荷载(P)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号